10
72
(K10a
4
)
A knot diagram
1
Linearized knot diagam
8 6 7 9 4 3 10 1 5 2
Solving Sequence
2,6
3 7
4,8
1 5 10 9
c
2
c
6
c
3
c
1
c
5
c
10
c
9
c
4
, c
7
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
37
2u
36
+ ··· + 2b + 1, u
12
+ 5u
10
+ 2u
9
9u
8
8u
7
+ 4u
6
+ 10u
5
+ 6u
4
2u
3
5u
2
+ a 2u 1,
u
38
3u
37
+ ··· + 2u 1i
I
u
2
= hb
2
b + 1, a + 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
37
2u
36
+· · ·+2b+1, u
12
+5u
10
+· · ·+a1, u
38
3u
37
+· · ·+2u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
12
5u
10
2u
9
+ 9u
8
+ 8u
7
4u
6
10u
5
6u
4
+ 2u
3
+ 5u
2
+ 2u + 1
1
2
u
37
+ u
36
+ ··· +
5
2
u
1
2
a
1
=
1
2
u
37
+ u
36
+ ··· +
5
2
u +
1
2
5
2
u
37
4u
36
+ ···
5
2
u +
3
2
a
5
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
10
=
2u
37
3u
36
+ ··· + 10u
2
+ 2
5
2
u
37
4u
36
+ ···
5
2
u +
3
2
a
9
=
3u
37
+ 5u
36
+ ··· + 5u 2
3
2
u
37
2u
36
+ ···
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
37
u
36
+35u
35
+21u
34
270u
33
205u
32
+1194u
31
+1182u
30
3222u
29
4364u
28
+
4873u
27
+ 10507u
26
1460u
25
15693u
24
9964u
23
+ 11016u
22
+ 21182u
21
+ 5747u
20
16959u
19
19349u
18
2018u
17
+ 13493u
16
+ 13726u
15
+ 2674u
14
6790u
13
7586u
12
3020u
11
+1300u
10
+2786u
9
+1852u
8
+442u
7
314u
6
448u
5
263u
4
91u
3
25u
2
+4u5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
38
+ 2u
37
+ ··· + 5u + 1
c
2
, c
3
, c
6
u
38
3u
37
+ ··· + 2u 1
c
4
, c
9
u
38
u
37
+ ··· 4u 4
c
5
u
38
+ 15u
37
+ ··· + 72u + 16
c
7
u
38
2u
37
+ ··· 37u + 17
c
10
u
38
+ 18u
37
+ ··· 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
38
+ 18y
37
+ ··· 5y + 1
c
2
, c
3
, c
6
y
38
33y
37
+ ··· 8y + 1
c
4
, c
9
y
38
15y
37
+ ··· 72y + 16
c
5
y
38
+ 13y
37
+ ··· 2848y + 256
c
7
y
38
6y
37
+ ··· 6333y + 289
c
10
y
38
+ 6y
37
+ ··· 61y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.000620 + 0.466336I
a = 0.694761 0.337574I
b = 0.527298 + 1.065360I
2.40471 3.95746I 10.27520 + 4.57056I
u = 1.000620 0.466336I
a = 0.694761 + 0.337574I
b = 0.527298 1.065360I
2.40471 + 3.95746I 10.27520 4.57056I
u = 1.062270 + 0.332916I
a = 1.252160 0.030949I
b = 0.570085 0.447308I
0.568983 + 0.479860I 6.06539 + 0.48126I
u = 1.062270 0.332916I
a = 1.252160 + 0.030949I
b = 0.570085 + 0.447308I
0.568983 0.479860I 6.06539 0.48126I
u = 0.719303 + 0.499357I
a = 1.44677 0.15075I
b = 0.362704 1.048010I
3.54227 + 2.75914I 13.19764 4.35912I
u = 0.719303 0.499357I
a = 1.44677 + 0.15075I
b = 0.362704 + 1.048010I
3.54227 2.75914I 13.19764 + 4.35912I
u = 0.214521 + 0.842165I
a = 2.14112 + 0.49356I
b = 0.573770 1.100590I
0.00579 + 8.62980I 6.60829 7.80256I
u = 0.214521 0.842165I
a = 2.14112 0.49356I
b = 0.573770 + 1.100590I
0.00579 8.62980I 6.60829 + 7.80256I
u = 0.174468 + 0.788088I
a = 1.39685 0.95450I
b = 0.731729 + 0.388434I
2.09675 + 3.65224I 3.04639 3.74887I
u = 0.174468 0.788088I
a = 1.39685 + 0.95450I
b = 0.731729 0.388434I
2.09675 3.65224I 3.04639 + 3.74887I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.317784 + 0.691757I
a = 0.058360 0.565761I
b = 0.214760 + 1.058960I
2.35641 + 1.43399I 10.35352 2.88902I
u = 0.317784 0.691757I
a = 0.058360 + 0.565761I
b = 0.214760 1.058960I
2.35641 1.43399I 10.35352 + 2.88902I
u = 1.251800 + 0.201783I
a = 0.999363 0.281232I
b = 0.652278 + 0.954226I
2.15443 + 0.39089I 9.84825 + 1.14697I
u = 1.251800 0.201783I
a = 0.999363 + 0.281232I
b = 0.652278 0.954226I
2.15443 0.39089I 9.84825 1.14697I
u = 1.260340 + 0.253559I
a = 0.003037 + 0.946509I
b = 0.662945 0.361405I
1.02515 + 1.90334I 5.81979 1.07076I
u = 1.260340 0.253559I
a = 0.003037 0.946509I
b = 0.662945 + 0.361405I
1.02515 1.90334I 5.81979 + 1.07076I
u = 1.284790 + 0.261207I
a = 1.278000 + 0.104536I
b = 0.731652 0.644131I
1.23963 4.86305I 7.46881 + 6.13263I
u = 1.284790 0.261207I
a = 1.278000 0.104536I
b = 0.731652 + 0.644131I
1.23963 + 4.86305I 7.46881 6.13263I
u = 0.016707 + 0.678781I
a = 1.38023 1.35662I
b = 0.666801 + 0.530991I
2.80379 + 1.46931I 1.12935 3.08473I
u = 0.016707 0.678781I
a = 1.38023 + 1.35662I
b = 0.666801 0.530991I
2.80379 1.46931I 1.12935 + 3.08473I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.315510 + 0.121395I
a = 0.61655 1.44009I
b = 0.291142 1.061280I
4.89567 0.49664I 12.27278 + 1.11503I
u = 1.315510 0.121395I
a = 0.61655 + 1.44009I
b = 0.291142 + 1.061280I
4.89567 + 0.49664I 12.27278 1.11503I
u = 1.329280 + 0.259672I
a = 1.99856 + 1.39234I
b = 0.547737 + 1.093970I
3.13917 + 6.61979I 9.45062 5.39938I
u = 1.329280 0.259672I
a = 1.99856 1.39234I
b = 0.547737 1.093970I
3.13917 6.61979I 9.45062 + 5.39938I
u = 0.091958 + 0.636482I
a = 2.64958 + 0.37806I
b = 0.571517 1.023410I
1.34864 3.34557I 3.46602 + 2.94107I
u = 0.091958 0.636482I
a = 2.64958 0.37806I
b = 0.571517 + 1.023410I
1.34864 + 3.34557I 3.46602 2.94107I
u = 1.372870 + 0.330158I
a = 0.451776 + 0.876637I
b = 0.811572 0.358412I
2.79986 7.69321I 0
u = 1.372870 0.330158I
a = 0.451776 0.876637I
b = 0.811572 + 0.358412I
2.79986 + 7.69321I 0
u = 0.582954
a = 0.891810
b = 0.340706
0.970134 9.92360
u = 1.42045
a = 0.242047
b = 0.758415
7.33419 11.4900
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40646 + 0.27352I
a = 0.517124 0.625628I
b = 0.183991 1.166970I
7.80695 4.93169I 0
u = 1.40646 0.27352I
a = 0.517124 + 0.625628I
b = 0.183991 + 1.166970I
7.80695 + 4.93169I 0
u = 1.39814 + 0.35135I
a = 1.96262 + 0.82883I
b = 0.591496 + 1.133850I
5.10692 12.92960I 0
u = 1.39814 0.35135I
a = 1.96262 0.82883I
b = 0.591496 1.133850I
5.10692 + 12.92960I 0
u = 1.47061 + 0.05198I
a = 0.671770 + 1.172880I
b = 0.422515 + 1.169490I
10.78740 4.17106I 0
u = 1.47061 0.05198I
a = 0.671770 1.172880I
b = 0.422515 1.169490I
10.78740 + 4.17106I 0
u = 0.215436 + 0.157466I
a = 1.56623 + 0.67273I
b = 0.415410 + 0.878457I
0.33342 + 1.74546I 2.32569 3.49934I
u = 0.215436 0.157466I
a = 1.56623 0.67273I
b = 0.415410 0.878457I
0.33342 1.74546I 2.32569 + 3.49934I
8
II. I
u
2
= hb
2
b + 1, a + 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
7
=
1
0
a
4
=
0
1
a
8
=
1
b
a
1
=
b + 1
b 1
a
5
=
0
1
a
10
=
0
b 1
a
9
=
0
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b 7
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
10
u
2
u + 1
c
2
, c
3
(u 1)
2
c
4
, c
5
, c
9
u
2
c
6
(u + 1)
2
c
8
u
2
+ u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
10
y
2
+ y + 1
c
2
, c
3
, c
6
(y 1)
2
c
4
, c
5
, c
9
y
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 9.00000 3.46410I
u = 1.00000
a = 1.00000
b = 0.500000 0.866025I
1.64493 2.02988I 9.00000 + 3.46410I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
38
+ 2u
37
+ ··· + 5u + 1)
c
2
, c
3
((u 1)
2
)(u
38
3u
37
+ ··· + 2u 1)
c
4
, c
9
u
2
(u
38
u
37
+ ··· 4u 4)
c
5
u
2
(u
38
+ 15u
37
+ ··· + 72u + 16)
c
6
((u + 1)
2
)(u
38
3u
37
+ ··· + 2u 1)
c
7
(u
2
u + 1)(u
38
2u
37
+ ··· 37u + 17)
c
8
(u
2
+ u + 1)(u
38
+ 2u
37
+ ··· + 5u + 1)
c
10
(u
2
u + 1)(u
38
+ 18u
37
+ ··· 5u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
+ y + 1)(y
38
+ 18y
37
+ ··· 5y + 1)
c
2
, c
3
, c
6
((y 1)
2
)(y
38
33y
37
+ ··· 8y + 1)
c
4
, c
9
y
2
(y
38
15y
37
+ ··· 72y + 16)
c
5
y
2
(y
38
+ 13y
37
+ ··· 2848y + 256)
c
7
(y
2
+ y + 1)(y
38
6y
37
+ ··· 6333y + 289)
c
10
(y
2
+ y + 1)(y
38
+ 6y
37
+ ··· 61y + 1)
14