12a
0774
(K12a
0774
)
A knot diagram
1
Linearized knot diagam
3 8 10 12 11 9 2 7 1 6 5 4
Solving Sequence
3,8
2 1 7 9 10 4 6 11 5 12
c
2
c
1
c
7
c
8
c
9
c
3
c
6
c
10
c
5
c
12
c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
44
u
43
+ ··· u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
44
u
43
+ · · · u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
7
=
u
u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
10
=
u
9
2u
7
+ 3u
5
4u
3
+ u
u
9
u
7
+ 3u
5
2u
3
+ u
a
4
=
u
18
+ 3u
16
8u
14
+ 15u
12
19u
10
+ 21u
8
14u
6
+ 6u
4
u
2
+ 1
u
18
+ 2u
16
7u
14
+ 10u
12
15u
10
+ 14u
8
10u
6
+ 4u
4
u
2
a
6
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
11
=
u
21
2u
19
+ ··· 4u
3
+ u
u
23
+ 3u
21
+ ··· 2u
3
+ u
a
5
=
u
37
4u
35
+ ··· + 5u
5
+ u
u
39
+ 5u
37
+ ··· 2u
3
+ u
a
12
=
u
34
+ 5u
32
+ ··· u
2
+ 1
u
34
+ 4u
32
+ ··· 4u
6
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
43
24u
41
+ ··· 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
44
+ 11u
43
+ ··· + 2u + 1
c
2
, c
7
u
44
+ u
43
+ ··· u
2
+ 1
c
3
u
44
+ u
43
+ ··· 20u + 1
c
4
, c
5
, c
10
c
11
, c
12
u
44
+ u
43
+ ··· + 2u + 1
c
9
u
44
7u
43
+ ··· 82u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
44
+ 45y
43
+ ··· + 22y + 1
c
2
, c
7
y
44
11y
43
+ ··· 2y + 1
c
3
y
44
+ y
43
+ ··· 146y + 1
c
4
, c
5
, c
10
c
11
, c
12
y
44
+ 57y
43
+ ··· 2y + 1
c
9
y
44
+ 5y
43
+ ··· 662y + 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.973577 + 0.164922I
15.0825 + 1.6902I 8.15131 + 0.48221I
u = 0.973577 0.164922I
15.0825 1.6902I 8.15131 0.48221I
u = 0.953126 + 0.350659I
4.40949 6.07307I 4.94666 + 8.49917I
u = 0.953126 0.350659I
4.40949 + 6.07307I 4.94666 8.49917I
u = 0.895823 + 0.344349I
0.76004 + 3.52272I 0.90093 8.67149I
u = 0.895823 0.344349I
0.76004 3.52272I 0.90093 + 8.67149I
u = 0.984525 + 0.354824I
13.9897 + 7.4569I 5.72896 6.66961I
u = 0.984525 0.354824I
13.9897 7.4569I 5.72896 + 6.66961I
u = 0.925891 + 0.175432I
5.40173 0.74499I 8.08077 + 0.34406I
u = 0.925891 0.175432I
5.40173 + 0.74499I 8.08077 0.34406I
u = 0.827466 + 0.255178I
1.38547 0.92460I 2.73817 + 0.09424I
u = 0.827466 0.255178I
1.38547 + 0.92460I 2.73817 0.09424I
u = 0.615862 + 0.604835I
9.75255 + 2.21449I 0.08262 3.14030I
u = 0.615862 0.604835I
9.75255 2.21449I 0.08262 + 3.14030I
u = 0.902990 + 0.718759I
10.10340 + 2.72623I 2.70072 3.12149I
u = 0.902990 0.718759I
10.10340 2.72623I 2.70072 + 3.12149I
u = 0.892831 + 0.769198I
0.21070 2.90742I 2.24337 + 2.68440I
u = 0.892831 0.769198I
0.21070 + 2.90742I 2.24337 2.68440I
u = 0.817945 + 0.876060I
6.01810 + 5.50586I 0. 1.93289I
u = 0.817945 0.876060I
6.01810 5.50586I 0. + 1.93289I
u = 0.829954 + 0.866717I
3.36907 3.82326I 1.37231 + 3.41233I
u = 0.829954 0.866717I
3.36907 + 3.82326I 1.37231 3.41233I
u = 0.848035 + 0.857865I
6.75596 + 0.77249I 6.88350 1.61671I
u = 0.848035 0.857865I
6.75596 0.77249I 6.88350 + 1.61671I
u = 0.869487 + 0.843192I
5.36576 + 2.39601I 3.40471 4.61138I
u = 0.869487 0.843192I
5.36576 2.39601I 3.40471 + 4.61138I
u = 0.932920 + 0.818861I
5.16549 + 3.79714I 3.00062 + 0.I
u = 0.932920 0.818861I
5.16549 3.79714I 3.00062 + 0.I
u = 0.909164 + 0.854591I
2.08909 3.16925I 2.00000 + 2.55615I
u = 0.909164 0.854591I
2.08909 + 3.16925I 2.00000 2.55615I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.954586 + 0.818188I
6.42188 7.00665I 5.98798 + 6.76938I
u = 0.954586 0.818188I
6.42188 + 7.00665I 5.98798 6.76938I
u = 0.969590 + 0.814117I
2.93183 + 10.06920I 0. 8.25971I
u = 0.969590 0.814117I
2.93183 10.06920I 0. + 8.25971I
u = 0.980677 + 0.812716I
6.52850 11.77360I 0. + 6.74145I
u = 0.980677 0.812716I
6.52850 + 11.77360I 0. 6.74145I
u = 0.554006 + 0.459665I
0.93127 1.66423I 1.39492 + 5.36634I
u = 0.554006 0.459665I
0.93127 + 1.66423I 1.39492 5.36634I
u = 0.177999 + 0.637957I
11.46970 3.90382I 0.05667 + 2.21807I
u = 0.177999 0.637957I
11.46970 + 3.90382I 0.05667 2.21807I
u = 0.196554 + 0.570963I
2.11354 + 2.70365I 0.96683 3.89024I
u = 0.196554 0.570963I
2.11354 2.70365I 0.96683 + 3.89024I
u = 0.302925 + 0.453673I
1.018180 0.410960I 9.05285 + 1.73879I
u = 0.302925 0.453673I
1.018180 + 0.410960I 9.05285 1.73879I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
44
+ 11u
43
+ ··· + 2u + 1
c
2
, c
7
u
44
+ u
43
+ ··· u
2
+ 1
c
3
u
44
+ u
43
+ ··· 20u + 1
c
4
, c
5
, c
10
c
11
, c
12
u
44
+ u
43
+ ··· + 2u + 1
c
9
u
44
7u
43
+ ··· 82u + 7
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
44
+ 45y
43
+ ··· + 22y + 1
c
2
, c
7
y
44
11y
43
+ ··· 2y + 1
c
3
y
44
+ y
43
+ ··· 146y + 1
c
4
, c
5
, c
10
c
11
, c
12
y
44
+ 57y
43
+ ··· 2y + 1
c
9
y
44
+ 5y
43
+ ··· 662y + 49
8