12a
0775
(K12a
0775
)
A knot diagram
1
Linearized knot diagam
3 8 10 12 11 1 9 2 7 6 5 4
Solving Sequence
2,9
8 3 1 7 10 4 6 11 5 12
c
8
c
2
c
1
c
7
c
9
c
3
c
6
c
10
c
5
c
12
c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
43
u
42
+ ··· + u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
43
u
42
+ · · · + u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
+ u
2
+ 1
u
4
a
4
=
u
11
2u
9
4u
7
4u
5
3u
3
u
11
u
9
2u
7
u
5
+ u
3
+ u
a
6
=
u
10
u
8
2u
6
u
4
+ u
2
+ 1
u
12
2u
10
4u
8
4u
6
3u
4
a
11
=
u
26
+ 3u
24
+ ··· + u
2
+ 1
u
28
+ 4u
26
+ ··· + 12u
8
+ u
4
a
5
=
u
42
5u
40
+ ··· + u
2
+ 1
u
42
+ u
41
+ ··· + u + 1
a
12
=
u
27
+ 4u
25
+ ··· + 12u
7
+ u
3
u
27
+ 3u
25
+ ··· + u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
42
20u
40
+ ··· 8u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
43
+ 11u
42
+ ··· 2u 1
c
2
, c
8
u
43
u
42
+ ··· + u
2
+ 1
c
3
, c
6
u
43
u
42
+ ··· 16u + 5
c
4
, c
5
, c
10
c
11
, c
12
u
43
u
42
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
43
+ 43y
42
+ ··· + 22y 1
c
2
, c
8
y
43
+ 11y
42
+ ··· 2y 1
c
3
, c
6
y
43
17y
42
+ ··· + 6y 25
c
4
, c
5
, c
10
c
11
, c
12
y
43
+ 55y
42
+ ··· 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.277924 + 0.951909I
3.90188 2.73159I 14.1982 + 4.9259I
u = 0.277924 0.951909I
3.90188 + 2.73159I 14.1982 4.9259I
u = 0.171363 + 0.973104I
6.85402 + 1.62529I 8.25292 + 0.49765I
u = 0.171363 0.973104I
6.85402 1.62529I 8.25292 0.49765I
u = 0.322382 + 0.965498I
1.09525 + 5.77920I 7.86814 8.38864I
u = 0.322382 0.965498I
1.09525 5.77920I 7.86814 + 8.38864I
u = 0.218790 + 0.942416I
1.70142 0.27515I 9.76443 + 0.48327I
u = 0.218790 0.942416I
1.70142 + 0.27515I 9.76443 0.48327I
u = 0.349470 + 0.985821I
7.87866 7.40221I 6.00523 + 6.67601I
u = 0.349470 0.985821I
7.87866 + 7.40221I 6.00523 6.67601I
u = 0.605298 + 0.622434I
12.21750 + 2.21577I 0.00606 3.15863I
u = 0.605298 0.622434I
12.21750 2.21577I 0.00606 + 3.15863I
u = 0.724879 + 0.902558I
11.90850 + 2.74938I 2.70691 3.06690I
u = 0.724879 0.902558I
11.90850 2.74938I 2.70691 + 3.06690I
u = 0.806200 + 0.845885I
4.50177 2.35046I 3.49635 + 4.76108I
u = 0.806200 0.845885I
4.50177 + 2.35046I 3.49635 4.76108I
u = 0.834116 + 0.820628I
3.12542 0.75919I 6.95792 + 1.59263I
u = 0.834116 0.820628I
3.12542 + 0.75919I 6.95792 1.59263I
u = 0.858422 + 0.817028I
6.46803 + 3.80376I 1.40821 3.43849I
u = 0.858422 0.817028I
6.46803 3.80376I 1.40821 + 3.43849I
u = 0.874607 + 0.815183I
15.8059 5.4998I 0.14982 + 1.94040I
u = 0.874607 0.815183I
15.8059 + 5.4998I 0.14982 1.94040I
u = 0.782409 + 0.935028I
4.22457 3.61643I 4.15250 + 0.77790I
u = 0.782409 0.935028I
4.22457 + 3.61643I 4.15250 0.77790I
u = 0.470068 + 0.618631I
3.05318 1.77992I 0.16951 + 4.97625I
u = 0.470068 0.618631I
3.05318 + 1.77992I 0.16951 4.97625I
u = 0.836155 + 0.902083I
9.93224 + 3.11134I 1.49937 2.73102I
u = 0.836155 0.902083I
9.93224 3.11134I 1.49937 + 2.73102I
u = 0.791521 + 0.959516I
2.69617 + 6.83503I 8.00000 6.45647I
u = 0.791521 0.959516I
2.69617 6.83503I 8.00000 + 6.45647I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.856944 + 0.910402I
19.5349 3.1770I 1.83688 + 2.53616I
u = 0.856944 0.910402I
19.5349 + 3.1770I 1.83688 2.53616I
u = 0.802935 + 0.972136I
5.98468 9.98705I 2.44159 + 8.35153I
u = 0.802935 0.972136I
5.98468 + 9.98705I 2.44159 8.35153I
u = 0.810427 + 0.981246I
15.2854 + 11.7553I 1.12118 6.76515I
u = 0.810427 0.981246I
15.2854 11.7553I 1.12118 + 6.76515I
u = 0.637340 + 0.169138I
10.43140 + 3.87845I 0.23993 2.25081I
u = 0.637340 0.169138I
10.43140 3.87845I 0.23993 + 2.25081I
u = 0.178947 + 0.606236I
0.367517 + 0.825434I 8.23829 8.13586I
u = 0.178947 0.606236I
0.367517 0.825434I 8.23829 + 8.13586I
u = 0.571695 + 0.133672I
1.42336 2.56705I 1.44027 + 4.09761I
u = 0.571695 0.133672I
1.42336 + 2.56705I 1.44027 4.09761I
u = 0.511485
1.21227 8.49140
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
43
+ 11u
42
+ ··· 2u 1
c
2
, c
8
u
43
u
42
+ ··· + u
2
+ 1
c
3
, c
6
u
43
u
42
+ ··· 16u + 5
c
4
, c
5
, c
10
c
11
, c
12
u
43
u
42
+ ··· + 2u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
43
+ 43y
42
+ ··· + 22y 1
c
2
, c
8
y
43
+ 11y
42
+ ··· 2y 1
c
3
, c
6
y
43
17y
42
+ ··· + 6y 25
c
4
, c
5
, c
10
c
11
, c
12
y
43
+ 55y
42
+ ··· 2y 1
8