12a
0785
(K12a
0785
)
A knot diagram
1
Linearized knot diagam
3 8 11 10 9 4 2 1 12 7 6 5
Solving Sequence
9,12 6,10
5 1 4 7 8 11 3 2
c
9
c
5
c
12
c
4
c
6
c
8
c
11
c
3
c
2
c
1
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−440u
19
7822u
18
+ ··· + b 83010, 101350u
19
+ 1884588u
18
+ ··· + 419a + 33060194,
u
20
+ 19u
19
+ ··· + 4045u + 419i
I
u
2
= h−55u
25
1474u
24
+ ··· + b 140189, 17044u
25
361672u
24
+ ··· + 2239a + 75396086,
u
26
+ 27u
25
+ ··· + 29107u + 2239i
I
u
3
= h−5.90378 × 10
27
a
17
u
3
+ 2.02102 × 10
27
a
16
u
3
+ ··· 6.93993 × 10
27
a 7.66958 × 10
27
,
a
17
u
3
3a
16
u
3
+ ··· 143936a + 299131, u
4
u
3
+ 2u + 1i
I
u
4
= h8.04582 × 10
32
a
17
u + 5.01372 × 10
32
a
16
u + ··· 7.33139 × 10
32
a 5.03241 × 10
33
,
2a
17
u + 3a
16
u + ··· + 36a + 9, u
2
u + 1i
I
u
5
= h1.00210 × 10
26
u
37
1.30856 × 10
27
u
36
+ ··· + 8.88085 × 10
25
b 1.95986 × 10
26
,
9.57765 × 10
25
u
37
1.33504 × 10
27
u
36
+ ··· + 8.88085 × 10
25
a 6.26187 × 10
25
, u
38
14u
37
+ ··· + u + 1i
I
u
6
= hb
2
+ ba a
2
1, a
9
a
8
+ 2a
7
a
6
+ 3a
5
a
4
+ 2a
3
+ a + 1, u 1i
I
u
7
= hb + 1, a, u 1i
I
v
1
= ha, b
9
+ b
8
+ 2b
7
+ b
6
+ 3b
5
+ b
4
+ 2b
3
+ b 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 220 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−440u
19
7822u
18
+ · · · + b 83010, 1.01 × 10
5
u
19
+ 1.88 ×
10
6
u
18
+ · · · + 419a + 3.31 × 10
7
, u
20
+ 19u
19
+ · · · + 4045u + 419i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
6
=
241.885u
19
4497.82u
18
+ ··· 728143.u 78902.6
440u
19
+ 7822u
18
+ ··· + 797266u + 83010
a
10
=
1
u
2
a
5
=
198.115u
19
+ 3324.18u
18
+ ··· + 69123.0u + 4107.39
440u
19
+ 7822u
18
+ ··· + 797266u + 83010
a
1
=
0.498807u
19
+ 8.47733u
18
+ ··· + 82.9165u 5.32697
u
19
+ 18u
18
+ ··· + 2024u + 209
a
4
=
296.115u
19
+ 5559.18u
18
+ ··· + 968647.u + 105457.
679u
19
11745u
18
+ ··· 752581u 73277
a
7
=
174.885u
19
2643.82u
18
+ ··· + 364183.u + 45169.4
716u
19
13126u
18
+ ··· 1876012u 201491
a
8
=
4.25060u
19
+ 81.7613u
18
+ ··· + 18071.5u + 1994.66
2u
19
27u
18
+ ··· + 11364u + 1362
a
11
=
0.501193u
19
8.52267u
18
+ ··· 127.084u 4.32697
u
18
17u
17
+ ··· 1812u 210
a
3
=
532.943u
19
9436.91u
18
+ ··· 915041.u 94759.3
73u
19
1966u
18
+ ··· 1107172u 125676
a
2
=
10.5609u
19
+ 95.6563u
18
+ ··· 125604.u 14672.3
90u
19
+ 1670u
18
+ ··· + 266050u + 28727
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 272u
19
4238u
18
31694u
17
149912u
16
499032u
15
1231956u
14
2311268u
13
3295698u
12
3426358u
11
2150740u
10
+ 263316u
9
+ 2695132u
8
+ 4037400u
7
+
4211956u
6
+ 3957808u
5
+ 3582696u
4
+ 2698114u
3
+ 1385042u
2
+ 391594u + 50234
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 10u
19
+ ··· 160u + 64
c
2
, c
7
u
20
6u
19
+ ··· 40u + 8
c
3
, c
5
, c
10
c
12
u
20
+ u
19
+ ··· u + 1
c
4
, c
11
u
20
+ u
19
+ ··· + 2u + 26
c
6
, c
9
u
20
19u
19
+ ··· 4045u + 419
c
8
u
20
18u
19
+ ··· 24920u + 3688
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
2y
19
+ ··· 23040y + 4096
c
2
, c
7
y
20
10y
19
+ ··· + 160y + 64
c
3
, c
5
, c
10
c
12
y
20
y
19
+ ··· + 11y + 1
c
4
, c
11
y
20
+ 21y
19
+ ··· + 10448y + 676
c
6
, c
9
y
20
9y
19
+ ··· 853997y + 175561
c
8
y
20
4y
19
+ ··· + 14317984y + 13601344
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.512099 + 0.698028I
a = 0.757073 0.694555I
b = 0.169556 + 0.506438I
0.63165 1.63991I 3.29731 + 4.07135I
u = 0.512099 0.698028I
a = 0.757073 + 0.694555I
b = 0.169556 0.506438I
0.63165 + 1.63991I 3.29731 4.07135I
u = 0.00580 + 1.43849I
a = 0.706982 + 0.120837I
b = 0.419757 0.411483I
4.80670 5.98648I 6.00000 + 11.08698I
u = 0.00580 1.43849I
a = 0.706982 0.120837I
b = 0.419757 + 0.411483I
4.80670 + 5.98648I 6.00000 11.08698I
u = 1.16335 + 1.05046I
a = 0.242193 + 1.117750I
b = 1.31614 1.05420I
8.2024 + 21.0457I 0
u = 1.16335 1.05046I
a = 0.242193 1.117750I
b = 1.31614 + 1.05420I
8.2024 21.0457I 0
u = 1.17748 + 1.05342I
a = 0.232775 1.068910I
b = 1.25568 + 1.02028I
5.1187 + 15.7823I 0
u = 1.17748 1.05342I
a = 0.232775 + 1.068910I
b = 1.25568 1.02028I
5.1187 15.7823I 0
u = 1.17927 + 1.07828I
a = 0.298894 + 1.028330I
b = 1.27177 0.91287I
9.8158 + 11.6670I 0
u = 1.17927 1.07828I
a = 0.298894 1.028330I
b = 1.27177 + 0.91287I
9.8158 11.6670I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.26927 + 1.01007I
a = 0.086517 0.867442I
b = 0.909643 + 1.001230I
0.48741 + 13.75390I 0
u = 1.26927 1.01007I
a = 0.086517 + 0.867442I
b = 0.909643 1.001230I
0.48741 13.75390I 0
u = 0.290662 + 0.201866I
a = 1.20981 + 1.20451I
b = 0.079084 + 0.815354I
1.78290 2.14893I 0.04329 + 4.23950I
u = 0.290662 0.201866I
a = 1.20981 1.20451I
b = 0.079084 0.815354I
1.78290 + 2.14893I 0.04329 4.23950I
u = 1.34983 + 0.99384I
a = 0.068669 + 0.743707I
b = 0.756125 0.916597I
0.45556 + 8.22051I 0
u = 1.34983 0.99384I
a = 0.068669 0.743707I
b = 0.756125 + 0.916597I
0.45556 8.22051I 0
u = 1.49300 + 1.31522I
a = 0.274286 0.533423I
b = 0.698441 + 0.483867I
7.23704 + 6.69767I 0
u = 1.49300 1.31522I
a = 0.274286 + 0.533423I
b = 0.698441 0.483867I
7.23704 6.69767I 0
u = 2.09503 + 0.56369I
a = 0.029412 + 0.377289I
b = 0.190855 0.638731I
0.34008 + 3.38661I 0
u = 2.09503 0.56369I
a = 0.029412 0.377289I
b = 0.190855 + 0.638731I
0.34008 3.38661I 0
6
II. I
u
2
= h−55u
25
1474u
24
+ · · · + b 140189, 1.70 × 10
4
u
25
3.62 ×
10
5
u
24
+ · · · + 2239a + 7.54 × 10
7
, u
26
+ 27u
25
+ · · · + 29107u + 2239i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
6
=
7.61233u
25
+ 161.533u
24
+ ··· 386377.u 33674
55u
25
+ 1474u
24
+ ··· + 1715942u + 140189
a
10
=
1
u
2
a
5
=
62.6123u
25
+ 1635.53u
24
+ ··· + 1.32957 × 10
6
u + 106515
55u
25
+ 1474u
24
+ ··· + 1715942u + 140189
a
1
=
1.49978u
25
39.4940u
24
+ ··· 40819.5u 3351
u
25
27u
24
+ ··· 40302u 3358
a
4
=
18.6123u
25
+ 533.533u
24
+ ··· + 1.07432 × 10
6
u + 89471
62u
25
1572u
24
+ ··· 688744u 52365
a
7
=
129.612u
25
+ 3364.53u
24
+ ··· + 2.48091 × 10
6
u + 197811
29u
25
+ 900u
24
+ ··· + 2630825u + 220793
a
8
=
4.25011u
25
+ 105.753u
24
+ ··· 539.268u 555
9u
25
+ 233u
24
+ ··· + 150013u + 11755
a
11
=
0.500223u
25
+ 13.5060u
24
+ ··· + 14037.5u + 1126
u
25
26u
24
+ ··· 14553u 1119
a
3
=
43.4185u
25
+ 1199.30u
24
+ ··· + 1.88287 × 10
6
u + 155911
113u
25
2859u
24
+ ··· 1150846u 86384
a
2
=
41.1867u
25
1062.04u
24
+ ··· 628304.u 48954
3u
25
119u
24
+ ··· 642593u 54154
(ii) Obstruction class = 1
(iii) Cusp Shapes = 115u
25
+ 2941u
24
+ ··· + 1504608u + 115595
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
13
+ 6u
12
+ ··· + 12u + 16)
2
c
2
, c
7
(u
13
4u
12
+ ··· 14u + 4)
2
c
3
, c
5
, c
10
c
12
u
26
+ u
25
+ ··· + u + 1
c
4
, c
11
(u
13
+ u
11
+ u
10
2u
7
u
6
u
5
2u
4
+ u
3
+ u
2
+ u + 1)
2
c
6
, c
9
u
26
27u
25
+ ··· 29107u + 2239
c
8
(u
13
12u
12
+ ··· + 210u + 4)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
13
+ 2y
12
+ ··· 656y 256)
2
c
2
, c
7
(y
13
6y
12
+ ··· + 12y 16)
2
c
3
, c
5
, c
10
c
12
y
26
3y
25
+ ··· y + 1
c
4
, c
11
(y
13
+ 2y
12
+ ··· y 1)
2
c
6
, c
9
y
26
13y
25
+ ··· + 24344647y + 5013121
c
8
(y
13
+ 2y
12
+ ··· + 52908y 16)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.666943 + 0.686087I
a = 0.512939 + 0.892142I
b = 0.833119 0.986335I
2.19583 + 5.62038I 0
u = 0.666943 0.686087I
a = 0.512939 0.892142I
b = 0.833119 + 0.986335I
2.19583 5.62038I 0
u = 0.570390 + 0.767585I
a = 0.523314 0.899263I
b = 0.659342 + 0.919109I
3.66757 + 0.92622I 0
u = 0.570390 0.767585I
a = 0.523314 + 0.899263I
b = 0.659342 0.919109I
3.66757 0.92622I 0
u = 0.444770 + 0.992031I
a = 0.465440 0.788020I
b = 0.339390 + 0.806743I
3.66757 0.92622I 0
u = 0.444770 0.992031I
a = 0.465440 + 0.788020I
b = 0.339390 0.806743I
3.66757 + 0.92622I 0
u = 0.427386 + 1.179570I
a = 0.441249 + 0.649055I
b = 0.151020 0.735618I
2.19583 5.62038I 0
u = 0.427386 1.179570I
a = 0.441249 0.649055I
b = 0.151020 + 0.735618I
2.19583 + 5.62038I 0
u = 1.132080 + 0.739477I
a = 0.070245 0.895176I
b = 1.25982 + 1.01265I
7.7321 + 12.4192I 0
u = 1.132080 0.739477I
a = 0.070245 + 0.895176I
b = 1.25982 1.01265I
7.7321 12.4192I 0
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.164030 + 0.702554I
a = 0.062452 + 0.817215I
b = 1.18521 0.99046I
4.61821 + 6.97339I 0
u = 1.164030 0.702554I
a = 0.062452 0.817215I
b = 1.18521 + 0.99046I
4.61821 6.97339I 0
u = 0.184678 + 0.579008I
a = 0.391553 + 1.227610I
b = 0.638483 0.453424I
0.986461 7.57792 + 0.I
u = 0.184678 0.579008I
a = 0.391553 1.227610I
b = 0.638483 + 0.453424I
0.986461 7.57792 + 0.I
u = 1.23786 + 0.75067I
a = 0.176474 0.765518I
b = 1.17090 + 0.84552I
9.61879 + 2.75258I 0
u = 1.23786 0.75067I
a = 0.176474 + 0.765518I
b = 1.17090 0.84552I
9.61879 2.75258I 0
u = 1.59354 + 0.40724I
a = 0.064942 + 0.451082I
b = 0.493879 0.916766I
0.14961 + 3.18230I 0
u = 1.59354 0.40724I
a = 0.064942 0.451082I
b = 0.493879 + 0.916766I
0.14961 3.18230I 0
u = 1.23407 + 1.31050I
a = 0.652684 + 0.170177I
b = 0.864731 + 0.289992I
7.7321 12.4192I 0
u = 1.23407 1.31050I
a = 0.652684 0.170177I
b = 0.864731 0.289992I
7.7321 + 12.4192I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.38359 + 1.21059I
a = 0.532677 + 0.314559I
b = 0.895509 + 0.010486I
9.61879 2.75258I 0
u = 1.38359 1.21059I
a = 0.532677 0.314559I
b = 0.895509 0.010486I
9.61879 + 2.75258I 0
u = 1.31515 + 1.34980I
a = 0.563894 0.177924I
b = 0.781390 0.189057I
4.61821 6.97339I 0
u = 1.31515 1.34980I
a = 0.563894 + 0.177924I
b = 0.781390 + 0.189057I
4.61821 + 6.97339I 0
u = 2.14553 + 0.78598I
a = 0.145155 0.294181I
b = 0.351114 + 0.409675I
0.14961 3.18230I 0
u = 2.14553 0.78598I
a = 0.145155 + 0.294181I
b = 0.351114 0.409675I
0.14961 + 3.18230I 0
12
III. I
u
3
= h−5.90 × 10
27
a
17
u
3
+ 2.02 × 10
27
a
16
u
3
+ · · · 6.94 × 10
27
a
7.67 × 10
27
, a
17
u
3
3a
16
u
3
+ · · · 143936a + 299131, u
4
u
3
+ 2u + 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
6
=
a
10.8520a
17
u
3
3.71493a
16
u
3
+ ··· + 12.7566a + 14.0978
a
10
=
1
u
2
a
5
=
10.8520a
17
u
3
3.71493a
16
u
3
+ ··· + 13.7566a + 14.0978
10.8520a
17
u
3
3.71493a
16
u
3
+ ··· + 12.7566a + 14.0978
a
1
=
23.0597a
17
u
3
29.2653a
16
u
3
+ ··· + 0.121965a 21.6421
20.4865a
17
u
3
35.2837a
16
u
3
+ ··· + 10.9648a + 5.80110
a
4
=
74.9828a
17
u
3
+ 65.3497a
16
u
3
+ ··· + 8.99494a + 9.62933
2.66737a
17
u
3
28.8131a
16
u
3
+ ··· + 12.7566a + 7.79364
a
7
=
52.3563a
17
u
3
+ 43.0709a
16
u
3
+ ··· 21.4565a 11.4650
44.5851a
17
u
3
47.4784a
16
u
3
+ ··· 15.4615a 9.97553
a
8
=
5.90924a
17
u
3
+ 13.5578a
16
u
3
+ ··· + 16.5792a 1.55499
12.6224a
17
u
3
41.2569a
16
u
3
+ ··· 2.59196a + 20.6120
a
11
=
a
2
u
2.57314a
17
u
3
+ 6.01835a
16
u
3
+ ··· 10.8428a 27.4432
a
3
=
17.6642a
17
u
3
+ 26.4376a
16
u
3
+ ··· 1.06590a + 3.09641
15.0877a
17
u
3
+ 16.6517a
16
u
3
+ ··· + 18.8899a + 17.1794
a
2
=
19.7311a
17
u
3
69.4691a
16
u
3
+ ··· + 3.00101a 43.6395
93.3569a
17
u
3
211.428a
16
u
3
+ ··· 9.44918a + 38.6282
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
29740572986906423854681079856
181342292827965370567175275
a
17
u
3
+
10865978472972041002022452596
181342292827965370567175275
a
16
u
3
+ ···
13566665167909917554244015824
181342292827965370567175275
a +
358282414867692411042348754
181342292827965370567175275
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
8
c
2
, c
7
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
8
c
3
, c
5
, c
10
c
12
u
72
u
71
+ ··· + 276774u + 52573
c
4
, c
11
(u
36
u
35
+ ··· 248u + 4921)
2
c
6
, c
9
(u
4
+ u
3
2u + 1)
18
c
8
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
8
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
8
c
2
, c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
8
c
3
, c
5
, c
10
c
12
y
72
27y
71
+ ··· 85049384088y + 2763920329
c
4
, c
11
(y
36
+ 39y
35
+ ··· + 446076356y + 24216241)
2
c
6
, c
9
(y
4
y
3
+ 6y
2
4y + 1)
18
c
8
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
8
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621964 + 0.187730I
a = 0.243057 0.919495I
b = 1.38638 + 0.42505I
1.50643 + 1.96639I 11.48501 2.76537I
u = 0.621964 + 0.187730I
a = 0.134471 + 1.161030I
b = 1.47915 0.89391I
1.50643 + 6.15314I 11.4850 11.0910I
u = 0.621964 + 0.187730I
a = 0.007767 1.345090I
b = 1.50405 + 1.31508I
6.88799 3.02516I 17.5768 1.0149I
u = 0.621964 + 0.187730I
a = 0.16894 + 1.46402I
b = 1.24189 1.23421I
3.90681 + 1.60535I 14.3279 4.0152I
u = 0.621964 + 0.187730I
a = 0.42871 + 1.57754I
b = 1.36735 1.70981I
3.90681 + 6.51418I 14.3279 9.8412I
u = 0.621964 + 0.187730I
a = 0.01568 1.64400I
b = 1.12952 + 1.59123I
7.66122 + 5.39594I 19.2841 7.6300I
u = 0.621964 + 0.187730I
a = 0.55384 1.59587I
b = 1.55061 + 1.88028I
6.88799 + 11.14470I 17.5768 12.8416I
u = 0.621964 + 0.187730I
a = 0.41384 1.74353I
b = 1.12745 + 1.97870I
7.66122 + 2.72360I 19.2841 6.2265I
u = 0.621964 + 0.187730I
a = 1.45832 1.14441I
b = 0.920625 0.121920I
3.90681 + 1.60535I 14.3279 4.0152I
u = 0.621964 + 0.187730I
a = 0.11177 + 1.88289I
b = 0.04479 1.46120I
4.48831 + 4.05977I 20.6523 6.9282I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621964 + 0.187730I
a = 0.93323 + 1.85638I
b = 0.920630 0.613419I
1.50643 + 1.96639I 11.48501 2.76537I
u = 0.621964 + 0.187730I
a = 1.86495 + 1.00666I
b = 0.936272 + 0.262230I
6.88799 3.02516I 17.5768 + 0.I
u = 0.621964 + 0.187730I
a = 1.64997 + 1.66023I
b = 0.722178 + 0.182166I
7.66122 + 5.39594I 19.2841 7.6300I
u = 0.621964 + 0.187730I
a = 0.46308 2.42279I
b = 0.120823 + 0.249703I
4.48831 + 4.05977I 0
u = 0.621964 + 0.187730I
a = 0.99584 2.39369I
b = 0.786199 + 0.418575I
1.50643 + 6.15314I 0
u = 0.621964 + 0.187730I
a = 0.64577 3.22161I
b = 0.608633 + 0.093941I
3.90681 + 6.51418I 0
u = 0.621964 + 0.187730I
a = 0.29331 + 3.40489I
b = 0.487989 + 0.012299I
7.66122 + 2.72360I 0
u = 0.621964 + 0.187730I
a = 0.77528 + 3.47061I
b = 0.673351 0.010234I
6.88799 + 11.14470I 0
u = 0.621964 0.187730I
a = 0.243057 + 0.919495I
b = 1.38638 0.42505I
1.50643 1.96639I 11.48501 + 2.76537I
u = 0.621964 0.187730I
a = 0.134471 1.161030I
b = 1.47915 + 0.89391I
1.50643 6.15314I 11.4850 + 11.0910I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621964 0.187730I
a = 0.007767 + 1.345090I
b = 1.50405 1.31508I
6.88799 + 3.02516I 17.5768 + 1.0149I
u = 0.621964 0.187730I
a = 0.16894 1.46402I
b = 1.24189 + 1.23421I
3.90681 1.60535I 14.3279 + 4.0152I
u = 0.621964 0.187730I
a = 0.42871 1.57754I
b = 1.36735 + 1.70981I
3.90681 6.51418I 14.3279 + 9.8412I
u = 0.621964 0.187730I
a = 0.01568 + 1.64400I
b = 1.12952 1.59123I
7.66122 5.39594I 19.2841 + 7.6300I
u = 0.621964 0.187730I
a = 0.55384 + 1.59587I
b = 1.55061 1.88028I
6.88799 11.14470I 17.5768 + 12.8416I
u = 0.621964 0.187730I
a = 0.41384 + 1.74353I
b = 1.12745 1.97870I
7.66122 2.72360I 19.2841 + 6.2265I
u = 0.621964 0.187730I
a = 1.45832 + 1.14441I
b = 0.920625 + 0.121920I
3.90681 1.60535I 14.3279 + 4.0152I
u = 0.621964 0.187730I
a = 0.11177 1.88289I
b = 0.04479 + 1.46120I
4.48831 4.05977I 20.6523 + 6.9282I
u = 0.621964 0.187730I
a = 0.93323 1.85638I
b = 0.920630 + 0.613419I
1.50643 1.96639I 11.48501 + 2.76537I
u = 0.621964 0.187730I
a = 1.86495 1.00666I
b = 0.936272 0.262230I
6.88799 + 3.02516I 17.5768 + 0.I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621964 0.187730I
a = 1.64997 1.66023I
b = 0.722178 0.182166I
7.66122 5.39594I 19.2841 + 7.6300I
u = 0.621964 0.187730I
a = 0.46308 + 2.42279I
b = 0.120823 0.249703I
4.48831 4.05977I 0
u = 0.621964 0.187730I
a = 0.99584 + 2.39369I
b = 0.786199 0.418575I
1.50643 6.15314I 0
u = 0.621964 0.187730I
a = 0.64577 + 3.22161I
b = 0.608633 0.093941I
3.90681 6.51418I 0
u = 0.621964 0.187730I
a = 0.29331 3.40489I
b = 0.487989 0.012299I
7.66122 2.72360I 0
u = 0.621964 0.187730I
a = 0.77528 3.47061I
b = 0.673351 + 0.010234I
6.88799 11.14470I 0
u = 1.12196 + 1.05376I
a = 0.935424 + 0.317876I
b = 1.352910 + 0.093439I
7.66122 5.39594I 19.2841 + 7.6300I
u = 1.12196 + 1.05376I
a = 0.629892 0.828967I
b = 1.34287 + 0.48468I
4.48831 4.05977I 20.6523 + 6.9282I
u = 1.12196 + 1.05376I
a = 0.072905 1.091850I
b = 0.773356 + 0.936297I
1.50643 6.15314I 11.4850 + 11.0910I
u = 1.12196 + 1.05376I
a = 0.893999 + 0.030444I
b = 1.131990 + 0.328604I
6.88799 + 3.02516I 17.5768 + 1.0149I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.12196 + 1.05376I
a = 0.004295 + 0.876976I
b = 0.558649 0.685116I
1.50643 1.96639I 11.48501 + 2.76537I
u = 1.12196 + 1.05376I
a = 0.311224 + 0.732782I
b = 1.162730 0.365037I
4.48831 4.05977I 20.6523 + 6.9282I
u = 1.12196 + 1.05376I
a = 0.766136 0.158857I
b = 1.102540 0.125636I
3.90681 1.60535I 14.3279 + 4.0152I
u = 1.12196 + 1.05376I
a = 0.170868 0.736807I
b = 1.30660 + 0.60299I
7.66122 2.72360I 19.2841 + 6.2265I
u = 1.12196 + 1.05376I
a = 0.090223 0.707270I
b = 1.24928 + 0.73115I
6.88799 11.14470I 17.5768 + 12.8416I
u = 1.12196 + 1.05376I
a = 0.302703 0.624434I
b = 0.901831 0.021552I
7.66122 5.39594I 19.2841 + 7.6300I
u = 1.12196 + 1.05376I
a = 0.134083 + 0.676847I
b = 1.209800 0.658356I
3.90681 6.51418I 14.3279 + 9.8412I
u = 1.12196 + 1.05376I
a = 0.210978 + 0.585167I
b = 0.677217 0.035293I
3.90681 1.60535I 14.3279 + 4.0152I
u = 1.12196 + 1.05376I
a = 0.360671 1.339120I
b = 1.22641 + 1.11280I
3.90681 6.51418I 14.3279 + 9.8412I
u = 1.12196 + 1.05376I
a = 0.255451 0.507035I
b = 0.645364 0.152056I
6.88799 + 3.02516I 17.5768 + 1.0149I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.12196 + 1.05376I
a = 0.52832 + 1.34223I
b = 1.41527 1.04664I
7.66122 2.72360I 19.2841 + 6.2265I
u = 1.12196 + 1.05376I
a = 0.35846 + 1.45756I
b = 1.27526 1.24816I
6.88799 11.14470I 17.5768 + 12.8416I
u = 1.12196 + 1.05376I
a = 0.167125 + 0.464153I
b = 0.949795 0.563580I
1.50643 6.15314I 11.4850 + 11.0910I
u = 1.12196 + 1.05376I
a = 0.264501 0.301973I
b = 0.833776 + 0.377946I
1.50643 1.96639I 11.48501 + 2.76537I
u = 1.12196 1.05376I
a = 0.935424 0.317876I
b = 1.352910 0.093439I
7.66122 + 5.39594I 19.2841 7.6300I
u = 1.12196 1.05376I
a = 0.629892 + 0.828967I
b = 1.34287 0.48468I
4.48831 + 4.05977I 20.6523 6.9282I
u = 1.12196 1.05376I
a = 0.072905 + 1.091850I
b = 0.773356 0.936297I
1.50643 + 6.15314I 11.4850 11.0910I
u = 1.12196 1.05376I
a = 0.893999 0.030444I
b = 1.131990 0.328604I
6.88799 3.02516I 17.5768 1.0149I
u = 1.12196 1.05376I
a = 0.004295 0.876976I
b = 0.558649 + 0.685116I
1.50643 + 1.96639I 11.48501 2.76537I
u = 1.12196 1.05376I
a = 0.311224 0.732782I
b = 1.162730 + 0.365037I
4.48831 + 4.05977I 20.6523 6.9282I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.12196 1.05376I
a = 0.766136 + 0.158857I
b = 1.102540 + 0.125636I
3.90681 + 1.60535I 14.3279 4.0152I
u = 1.12196 1.05376I
a = 0.170868 + 0.736807I
b = 1.30660 0.60299I
7.66122 + 2.72360I 19.2841 6.2265I
u = 1.12196 1.05376I
a = 0.090223 + 0.707270I
b = 1.24928 0.73115I
6.88799 + 11.14470I 17.5768 12.8416I
u = 1.12196 1.05376I
a = 0.302703 + 0.624434I
b = 0.901831 + 0.021552I
7.66122 + 5.39594I 19.2841 7.6300I
u = 1.12196 1.05376I
a = 0.134083 0.676847I
b = 1.209800 + 0.658356I
3.90681 + 6.51418I 14.3279 9.8412I
u = 1.12196 1.05376I
a = 0.210978 0.585167I
b = 0.677217 + 0.035293I
3.90681 + 1.60535I 14.3279 4.0152I
u = 1.12196 1.05376I
a = 0.360671 + 1.339120I
b = 1.22641 1.11280I
3.90681 + 6.51418I 14.3279 9.8412I
u = 1.12196 1.05376I
a = 0.255451 + 0.507035I
b = 0.645364 + 0.152056I
6.88799 3.02516I 17.5768 1.0149I
u = 1.12196 1.05376I
a = 0.52832 1.34223I
b = 1.41527 + 1.04664I
7.66122 + 2.72360I 19.2841 6.2265I
u = 1.12196 1.05376I
a = 0.35846 1.45756I
b = 1.27526 + 1.24816I
6.88799 + 11.14470I 17.5768 12.8416I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.12196 1.05376I
a = 0.167125 0.464153I
b = 0.949795 + 0.563580I
1.50643 + 6.15314I 11.4850 11.0910I
u = 1.12196 1.05376I
a = 0.264501 + 0.301973I
b = 0.833776 0.377946I
1.50643 + 1.96639I 11.48501 2.76537I
23
IV. I
u
4
= h8.05 × 10
32
a
17
u + 5.01 × 10
32
a
16
u + · · · 7.33 × 10
32
a 5.03 ×
10
33
, 2a
17
u + 3a
16
u + · · · + 36a + 9, u
2
u + 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
6
=
a
0.385900a
17
u 0.240472a
16
u + ··· + 0.351634a + 2.41369
a
10
=
1
u 1
a
5
=
0.385900a
17
u 0.240472a
16
u + ··· + 1.35163a + 2.41369
0.385900a
17
u 0.240472a
16
u + ··· + 0.351634a + 2.41369
a
1
=
0.171431a
17
u + 0.264717a
16
u + ··· 21.2084a + 1.58429
0.218698a
17
u + 0.742566a
16
u + ··· 33.7196a 2.09684
a
4
=
0.398902a
17
u 0.497063a
16
u + ··· + 6.40875a 1.34451
0.797803a
17
u + 0.994126a
16
u + ··· 12.8175a + 2.68902
a
7
=
0.385900a
17
u 0.240472a
16
u + ··· + 2.35163a + 2.41369
0.385900a
17
u + 0.240472a
16
u + ··· 1.35163a 2.41369
a
8
=
0.115010a
17
u 0.353110a
16
u + ··· + 15.4897a + 2.23782
0.185024a
17
u + 0.460788a
16
u + ··· + 9.03962a 9.84163
a
11
=
a
2
u
0.0472669a
17
u 0.477849a
16
u + ··· + 12.5112a + 3.68113
a
3
=
0.216648a
17
u 0.531277a
16
u + ··· + 2.78395a 2.13112
0.232474a
17
u + 0.00880116a
16
u + ··· + 11.3610a + 3.70600
a
2
=
0.0834056a
17
u + 0.277553a
16
u + ··· 43.0081a + 1.20610
0.572218a
17
u + 0.212244a
16
u + ··· + 38.3797a 9.86400
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00962865a
17
u 0.477998a
16
u + ··· 45.3429a + 35.5487
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
4
c
2
, c
7
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
4
c
3
, c
5
, c
10
c
12
u
36
+ u
35
+ ··· + 2u
2
+ 1
c
4
, c
11
u
36
+ 3u
35
+ ··· + 948u + 193
c
6
, c
9
(u
2
+ u + 1)
18
c
8
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
4
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
4
c
2
, c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
4
c
3
, c
5
, c
10
c
12
y
36
9y
35
+ ··· + 4y + 1
c
4
, c
11
y
36
21y
35
+ ··· + 837524y + 37249
c
6
, c
9
(y
2
+ y + 1)
18
c
8
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
4
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.541983 + 0.836491I
b = 1.62386 0.82399I
0.61694 6.51418I 2.32792 + 9.84118I
u = 0.500000 + 0.866025I
a = 0.603976 0.851109I
b = 1.76804 + 0.88879I
3.59813 11.14470I 5.57680 + 12.84155I
u = 0.500000 + 0.866025I
a = 0.409962 0.969381I
b = 0.90415 + 1.09651I
1.78344 1.96639I 0.51499 + 2.76537I
u = 0.500000 + 0.866025I
a = 0.438782 + 0.957848I
b = 1.18925 1.06578I
1.78344 6.15314I 0.51499 + 11.09103I
u = 0.500000 + 0.866025I
a = 0.561919 0.738983I
b = 1.71694 + 0.61600I
4.37135 2.72360I 7.28409 + 6.22645I
u = 0.500000 + 0.866025I
a = 0.992366 0.445735I
b = 0.253752 + 0.238566I
0.61694 1.60535I 2.32792 + 4.01523I
u = 0.500000 + 0.866025I
a = 0.523373 0.642770I
b = 0.189893 + 0.743243I
0.61694 1.60535I 2.32792 + 4.01523I
u = 0.500000 + 0.866025I
a = 0.257489 + 0.650379I
b = 0.036976 1.088490I
3.59813 + 3.02516I 5.57680 + 1.01485I
u = 0.500000 + 0.866025I
a = 0.109500 + 0.594369I
b = 1.081850 0.202354I
1.19845 4.05977I 8.65235 + 6.92820I
u = 0.500000 + 0.866025I
a = 1.26468 + 0.72630I
b = 0.136996 0.491540I
1.78344 1.96639I 0.51499 + 2.76537I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.10950 1.48180I
b = 0.825668 + 0.646069I
1.19845 4.05977I 8.65235 + 6.92820I
u = 0.500000 + 0.866025I
a = 1.06039 + 1.13009I
b = 0.712881 0.379867I
4.37135 5.39594I 7.28409 + 7.62995I
u = 0.500000 + 0.866025I
a = 1.45082 + 0.61223I
b = 0.526650 0.035958I
3.59813 + 3.02516I 5.57680 + 1.01485I
u = 0.500000 + 0.866025I
a = 0.209456 + 0.248628I
b = 0.475959 0.676068I
4.37135 5.39594I 7.28409 + 7.62995I
u = 0.500000 + 0.866025I
a = 1.23586 1.20093I
b = 0.281762 + 0.703896I
1.78344 6.15314I 0.51499 + 11.09103I
u = 0.500000 + 0.866025I
a = 0.97376 1.92500I
b = 0.551769 + 0.930683I
0.61694 6.51418I 2.32792 + 9.84118I
u = 0.500000 + 0.866025I
a = 0.70793 + 2.11771I
b = 0.684016 0.938790I
4.37135 2.72360I 7.28409 + 6.22645I
u = 0.500000 + 0.866025I
a = 1.10434 + 2.11371I
b = 0.549397 1.026950I
3.59813 11.14470I 5.57680 + 12.84155I
u = 0.500000 0.866025I
a = 0.541983 0.836491I
b = 1.62386 + 0.82399I
0.61694 + 6.51418I 2.32792 9.84118I
u = 0.500000 0.866025I
a = 0.603976 + 0.851109I
b = 1.76804 0.88879I
3.59813 + 11.14470I 5.57680 12.84155I
28
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 0.409962 + 0.969381I
b = 0.90415 1.09651I
1.78344 + 1.96639I 0.51499 2.76537I
u = 0.500000 0.866025I
a = 0.438782 0.957848I
b = 1.18925 + 1.06578I
1.78344 + 6.15314I 0.51499 11.09103I
u = 0.500000 0.866025I
a = 0.561919 + 0.738983I
b = 1.71694 0.61600I
4.37135 + 2.72360I 7.28409 6.22645I
u = 0.500000 0.866025I
a = 0.992366 + 0.445735I
b = 0.253752 0.238566I
0.61694 + 1.60535I 2.32792 4.01523I
u = 0.500000 0.866025I
a = 0.523373 + 0.642770I
b = 0.189893 0.743243I
0.61694 + 1.60535I 2.32792 4.01523I
u = 0.500000 0.866025I
a = 0.257489 0.650379I
b = 0.036976 + 1.088490I
3.59813 3.02516I 5.57680 1.01485I
u = 0.500000 0.866025I
a = 0.109500 0.594369I
b = 1.081850 + 0.202354I
1.19845 + 4.05977I 8.65235 6.92820I
u = 0.500000 0.866025I
a = 1.26468 0.72630I
b = 0.136996 + 0.491540I
1.78344 + 1.96639I 0.51499 2.76537I
u = 0.500000 0.866025I
a = 0.10950 + 1.48180I
b = 0.825668 0.646069I
1.19845 + 4.05977I 8.65235 6.92820I
u = 0.500000 0.866025I
a = 1.06039 1.13009I
b = 0.712881 + 0.379867I
4.37135 + 5.39594I 7.28409 7.62995I
29
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 1.45082 0.61223I
b = 0.526650 + 0.035958I
3.59813 3.02516I 5.57680 1.01485I
u = 0.500000 0.866025I
a = 0.209456 0.248628I
b = 0.475959 + 0.676068I
4.37135 + 5.39594I 7.28409 7.62995I
u = 0.500000 0.866025I
a = 1.23586 + 1.20093I
b = 0.281762 0.703896I
1.78344 + 6.15314I 0.51499 11.09103I
u = 0.500000 0.866025I
a = 0.97376 + 1.92500I
b = 0.551769 0.930683I
0.61694 + 6.51418I 2.32792 9.84118I
u = 0.500000 0.866025I
a = 0.70793 2.11771I
b = 0.684016 + 0.938790I
4.37135 + 2.72360I 7.28409 6.22645I
u = 0.500000 0.866025I
a = 1.10434 2.11371I
b = 0.549397 + 1.026950I
3.59813 + 11.14470I 5.57680 12.84155I
30
V.
I
u
5
= h1.00 × 10
26
u
37
1.31 × 10
27
u
36
+ · · · + 8.88 × 10
25
b 1.96 × 10
26
, 9.58 ×
10
25
u
37
1.34×10
27
u
36
+· · ·+8.88×10
25
a6.26×10
25
, u
38
14u
37
+· · ·+u+1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
6
=
1.07846u
37
+ 15.0328u
36
+ ··· 1.32859u + 0.705098
1.12838u
37
+ 14.7346u
36
+ ··· + 5.11878u + 2.20684
a
10
=
1
u
2
a
5
=
2.20684u
37
+ 29.7674u
36
+ ··· + 3.79019u + 2.91194
1.12838u
37
+ 14.7346u
36
+ ··· + 5.11878u + 2.20684
a
1
=
1.14500u
37
13.8852u
36
+ ··· 5.28452u 6.30863
2.14475u
37
29.3644u
36
+ ··· 6.45362u 1.14500
a
4
=
2.14118u
37
+ 29.5971u
36
+ ··· + 2.00663u + 1.83348
0.711034u
37
7.98714u
36
+ ··· + 4.30409u + 1.45781
a
7
=
1.29908u
37
+ 18.2134u
36
+ ··· + 3.34374u 5.63126
0.348895u
37
+ 4.27392u
36
+ ··· 1.33584u + 1.26983
a
8
=
2.04475u
37
+ 26.4077u
36
+ ··· 8.11017u + 6.02040
1.55656u
37
+ 20.0352u
36
+ ··· + 3.77539u 0.100008
a
11
=
2.48235u
37
+ 35.5630u
36
+ ··· + 6.33298u 6.16339
1.48260u
37
20.0838u
36
+ ··· 3.16387u + 0.999756
a
3
=
0.353686u
37
8.41298u
36
+ ··· + 2.42110u + 7.48022
3.06937u
37
+ 42.9880u
36
+ ··· + 9.94450u + 2.74494
a
2
=
5.94574u
37
82.0649u
36
+ ··· 3.71762u + 7.45689
0.912713u
37
8.80065u
36
+ ··· + 3.88952u 2.58106
(ii) Obstruction class = 1
(iii) Cusp Shapes =
492727574785899921881516631
88808490307033734347531651
u
37
6194406854275124730621113225
88808490307033734347531651
u
36
+
···
3077658052047205031838876941
88808490307033734347531651
u
1759778284097884737803921371
88808490307033734347531651
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
19
11u
18
+ ··· 2u + 1)
2
c
2
, c
7
u
38
11u
36
+ ··· 2u
2
+ 1
c
3
, c
10
u
38
2u
37
+ ··· 5u + 1
c
4
, c
11
u
38
+ 11u
36
+ ··· + 39u
2
+ 1
c
5
, c
12
u
38
+ 2u
37
+ ··· + 5u + 1
c
6
u
38
+ 14u
37
+ ··· u + 1
c
8
u
38
39u
34
+ ··· 12u
2
+ 1
c
9
u
38
14u
37
+ ··· + u + 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
19
+ y
18
+ ··· + 34y 1)
2
c
2
, c
7
(y
19
11y
18
+ ··· 2y + 1)
2
c
3
, c
5
, c
10
c
12
y
38
14y
37
+ ··· + 31y + 1
c
4
, c
11
(y
19
+ 11y
18
+ ··· + 39y + 1)
2
c
6
, c
9
y
38
20y
37
+ ··· 21y + 1
c
8
(y
19
39y
17
+ ··· 12y + 1)
2
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.968758 + 0.176842I
a = 0.033254 + 0.182169I
b = 0.999984 + 0.176661I
3.32952 11.83134 + 0.I
u = 0.968758 0.176842I
a = 0.033254 0.182169I
b = 0.999984 0.176661I
3.32952 11.83134 + 0.I
u = 0.579538 + 0.657340I
a = 0.943026 + 1.017610I
b = 0.205604 0.680250I
6.22842 + 5.39858I 13.3102 7.2958I
u = 0.579538 0.657340I
a = 0.943026 1.017610I
b = 0.205604 + 0.680250I
6.22842 5.39858I 13.3102 + 7.2958I
u = 0.989111 + 0.541052I
a = 0.374160 0.278889I
b = 0.875497 0.422743I
6.16647 + 4.01607I 12.51721 5.30034I
u = 0.989111 0.541052I
a = 0.374160 + 0.278889I
b = 0.875497 + 0.422743I
6.16647 4.01607I 12.51721 + 5.30034I
u = 0.754554 + 0.921192I
a = 0.130405 + 0.889071I
b = 0.805968 0.781140I
0.09286 5.79250I 0. + 9.57133I
u = 0.754554 0.921192I
a = 0.130405 0.889071I
b = 0.805968 + 0.781140I
0.09286 + 5.79250I 0. 9.57133I
u = 0.689684 + 0.304524I
a = 0.009715 0.697784I
b = 1.130350 0.432057I
6.16647 4.01607I 12.51721 + 5.30034I
u = 0.689684 0.304524I
a = 0.009715 + 0.697784I
b = 1.130350 + 0.432057I
6.16647 + 4.01607I 12.51721 5.30034I
34
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.206852 + 0.719847I
a = 0.36842 1.38031I
b = 0.979786 + 0.194884I
0.09286 5.79250I 5.01784 + 9.57133I
u = 0.206852 0.719847I
a = 0.36842 + 1.38031I
b = 0.979786 0.194884I
0.09286 + 5.79250I 5.01784 9.57133I
u = 0.450422 + 0.588996I
a = 0.260946 + 1.313780I
b = 1.152450 0.438017I
0.21041 2.23415I 4.27004 + 3.35920I
u = 0.450422 0.588996I
a = 0.260946 1.313780I
b = 1.152450 + 0.438017I
0.21041 + 2.23415I 4.27004 3.35920I
u = 0.648553 + 1.127180I
a = 0.049855 0.762092I
b = 0.578914 + 0.610276I
0.21041 2.23415I 0
u = 0.648553 1.127180I
a = 0.049855 + 0.762092I
b = 0.578914 0.610276I
0.21041 + 2.23415I 0
u = 1.023480 + 0.941692I
a = 0.104442 1.057930I
b = 1.22994 + 0.97508I
6.07851 10.59750I 0
u = 1.023480 0.941692I
a = 0.104442 + 1.057930I
b = 1.22994 0.97508I
6.07851 + 10.59750I 0
u = 1.051710 + 0.921697I
a = 0.127410 + 0.955311I
b = 1.16836 0.87547I
3.13428 5.88725I 0
u = 1.051710 0.921697I
a = 0.127410 0.955311I
b = 1.16836 + 0.87547I
3.13428 + 5.88725I 0
35
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.05571 + 0.97125I
a = 0.276111 1.011390I
b = 1.33028 + 0.78757I
6.96832 2.20792I 0
u = 1.05571 0.97125I
a = 0.276111 + 1.011390I
b = 1.33028 0.78757I
6.96832 + 2.20792I 0
u = 0.450018 + 0.294282I
a = 2.30414 + 0.98679I
b = 0.645307 0.642915I
3.13428 5.88725I 6.10322 + 3.33579I
u = 0.450018 0.294282I
a = 2.30414 0.98679I
b = 0.645307 + 0.642915I
3.13428 + 5.88725I 6.10322 3.33579I
u = 0.503149 + 0.186021I
a = 0.28442 2.60224I
b = 0.112954 + 0.920226I
4.01271 + 3.94421I 0.80843 2.14732I
u = 0.503149 0.186021I
a = 0.28442 + 2.60224I
b = 0.112954 0.920226I
4.01271 3.94421I 0.80843 + 2.14732I
u = 1.08335 + 1.05071I
a = 0.466233 + 0.805227I
b = 1.262780 0.424688I
4.01271 3.94421I 0
u = 1.08335 1.05071I
a = 0.466233 0.805227I
b = 1.262780 + 0.424688I
4.01271 + 3.94421I 0
u = 0.409291 + 0.110056I
a = 2.39251 2.62061I
b = 0.560795 + 0.904131I
6.96832 2.20792I 9.88914 0.83240I
u = 0.409291 0.110056I
a = 2.39251 + 2.62061I
b = 0.560795 0.904131I
6.96832 + 2.20792I 9.88914 + 0.83240I
36
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.323511 + 0.265038I
a = 3.43477 0.83700I
b = 0.817872 + 0.728634I
6.07851 10.59750I 8.79802 + 6.88476I
u = 0.323511 0.265038I
a = 3.43477 + 0.83700I
b = 0.817872 0.728634I
6.07851 + 10.59750I 8.79802 6.88476I
u = 1.07221 + 1.23787I
a = 0.509379 0.540089I
b = 0.968129 + 0.155352I
6.22842 5.39858I 0
u = 1.07221 1.23787I
a = 0.509379 + 0.540089I
b = 0.968129 0.155352I
6.22842 + 5.39858I 0
u = 1.75690 + 0.41553I
a = 0.040049 + 0.451631I
b = 0.332418 0.887807I
0.01311 3.38613I 0
u = 1.75690 0.41553I
a = 0.040049 0.451631I
b = 0.332418 + 0.887807I
0.01311 + 3.38613I 0
u = 2.48579 + 0.15450I
a = 0.067185 + 0.321722I
b = 0.043866 0.230460I
0.01311 3.38613I 0
u = 2.48579 0.15450I
a = 0.067185 0.321722I
b = 0.043866 + 0.230460I
0.01311 + 3.38613I 0
37
VI. I
u
6
= hb
2
+ ba a
2
1, a
9
a
8
+ 2a
7
a
6
+ 3a
5
a
4
+ 2a
3
+ a + 1, u 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
1
a
6
=
a
b
a
10
=
1
1
a
5
=
b + a
b
a
1
=
ba 2a
2
1
a
2
a
4
=
b + 2a
b + a
a
7
=
b a
a
a
8
=
a
3
b + 2a
4
+ a
2
+ 1
a
4
a
11
=
a
2
ba + 1
a
3
=
a
2
b + a
3
+ b + 2a
a
3
+ a
a
2
=
a
7
b a
8
2a
5
b 3a
6
2a
3
b 3a
4
2ba 4a
2
1
a
8
2a
6
2a
4
2a
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
7
4a
6
+ 4a
5
4a
4
+ 8a
3
4a
2
18
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
2
c
2
, c
7
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
2
c
3
, c
5
, c
10
c
12
u
18
u
17
+ ··· + 6u 1
c
4
, c
11
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
2
c
6
, c
9
(u + 1)
18
c
8
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
2
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
2
c
2
, c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
2
c
3
, c
5
, c
10
c
12
y
18
9y
17
+ ··· 36y + 1
c
4
, c
11
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
2
c
6
, c
9
(y 1)
18
c
8
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
2
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.140343 + 0.966856I
b = 0.405278 0.989579I
1.50643 + 2.09337I 11.48501 4.16283I
u = 1.00000
a = 0.140343 + 0.966856I
b = 0.264935 + 0.022723I
1.50643 + 2.09337I 11.48501 4.16283I
u = 1.00000
a = 0.140343 0.966856I
b = 0.405278 + 0.989579I
1.50643 2.09337I 11.48501 + 4.16283I
u = 1.00000
a = 0.140343 0.966856I
b = 0.264935 0.022723I
1.50643 2.09337I 11.48501 + 4.16283I
u = 1.00000
a = 0.628449 + 0.875112I
b = 0.688833 + 0.247803I
3.90681 + 2.45442I 14.3279 2.9130I
u = 1.00000
a = 0.628449 + 0.875112I
b = 1.31728 1.12291I
3.90681 + 2.45442I 14.3279 2.9130I
u = 1.00000
a = 0.628449 0.875112I
b = 0.688833 0.247803I
3.90681 2.45442I 14.3279 + 2.9130I
u = 1.00000
a = 0.628449 0.875112I
b = 1.31728 + 1.12291I
3.90681 2.45442I 14.3279 + 2.9130I
u = 1.00000
a = 0.796005 + 0.733148I
b = 0.818454 + 0.233108I
7.66122 + 1.33617I 19.2841 0.7017I
u = 1.00000
a = 0.796005 + 0.733148I
b = 1.61446 0.96626I
7.66122 + 1.33617I 19.2841 0.7017I
41
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.796005 0.733148I
b = 0.818454 0.233108I
7.66122 1.33617I 19.2841 + 0.7017I
u = 1.00000
a = 0.796005 0.733148I
b = 1.61446 + 0.96626I
7.66122 1.33617I 19.2841 + 0.7017I
u = 1.00000
a = 0.728966 + 0.986295I
b = 0.708074 + 0.344774I
6.88799 7.08493I 17.5768 + 5.9133I
u = 1.00000
a = 0.728966 + 0.986295I
b = 1.43704 1.33107I
6.88799 7.08493I 17.5768 + 5.9133I
u = 1.00000
a = 0.728966 0.986295I
b = 0.708074 0.344774I
6.88799 + 7.08493I 17.5768 5.9133I
u = 1.00000
a = 0.728966 0.986295I
b = 1.43704 + 1.33107I
6.88799 + 7.08493I 17.5768 5.9133I
u = 1.00000
a = 0.512358
b = 0.896270
4.48831 20.6520
u = 1.00000
a = 0.512358
b = 1.40863
4.48831 20.6520
42
VII. I
u
7
= hb + 1, a, u 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
1
a
6
=
0
1
a
10
=
1
1
a
5
=
1
1
a
1
=
1
0
a
4
=
1
1
a
7
=
1
0
a
8
=
1
0
a
11
=
0
1
a
3
=
1
0
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
11
u
c
3
, c
6
, c
10
u + 1
c
5
, c
9
, c
12
u 1
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
11
y
c
3
, c
5
, c
6
c
9
, c
10
, c
12
y 1
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
46
VIII. I
v
1
= ha, b
9
+ b
8
+ 2b
7
+ b
6
+ 3b
5
+ b
4
+ 2b
3
+ b 1, v 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
1
0
a
6
=
0
b
a
10
=
1
0
a
5
=
b
b
a
1
=
b
2
+ 1
b
2
a
4
=
0
b
a
7
=
0
b
a
8
=
b
4
+ b
2
+ 1
b
4
a
11
=
1
b
2
a
3
=
b
b
3
+ b
a
2
=
b
6
+ b
4
+ 2b
2
+ 1
b
8
+ 2b
6
+ 2b
4
+ 2b
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
7
4b
6
4b
5
4b
4
8b
3
4b
2
6
47
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
2
, c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
6
, c
9
u
9
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
48
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
7
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
, c
9
y
9
c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
49
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.140343 + 0.966856I
1.78344 2.09337I 0.51499 + 4.16283I
v = 1.00000
a = 0
b = 0.140343 0.966856I
1.78344 + 2.09337I 0.51499 4.16283I
v = 1.00000
a = 0
b = 0.628449 + 0.875112I
0.61694 2.45442I 2.32792 + 2.91298I
v = 1.00000
a = 0
b = 0.628449 0.875112I
0.61694 + 2.45442I 2.32792 2.91298I
v = 1.00000
a = 0
b = 0.796005 + 0.733148I
4.37135 1.33617I 7.28409 + 0.70175I
v = 1.00000
a = 0
b = 0.796005 0.733148I
4.37135 + 1.33617I 7.28409 0.70175I
v = 1.00000
a = 0
b = 0.728966 + 0.986295I
3.59813 + 7.08493I 5.57680 5.91335I
v = 1.00000
a = 0
b = 0.728966 0.986295I
3.59813 7.08493I 5.57680 + 5.91335I
v = 1.00000
a = 0
b = 0.512358
1.19845 8.65230
50
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
15
· ((u
13
+ 6u
12
+ ··· + 12u + 16)
2
)(u
19
11u
18
+ ··· 2u + 1)
2
· (u
20
+ 10u
19
+ ··· 160u + 64)
c
2
, c
7
u(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
14
· ((u
13
4u
12
+ ··· 14u + 4)
2
)(u
20
6u
19
+ ··· 40u + 8)
· (u
38
11u
36
+ ··· 2u
2
+ 1)
c
3
, c
10
(u + 1)(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
18
u
17
+ ··· + 6u 1)(u
20
+ u
19
+ ··· u + 1)(u
26
+ u
25
+ ··· + u + 1)
· (u
36
+ u
35
+ ··· + 2u
2
+ 1)(u
38
2u
37
+ ··· 5u + 1)
· (u
72
u
71
+ ··· + 276774u + 52573)
c
4
, c
11
u(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
3
· (u
13
+ u
11
+ u
10
2u
7
u
6
u
5
2u
4
+ u
3
+ u
2
+ u + 1)
2
· (u
20
+ u
19
+ ··· + 2u + 26)(u
36
u
35
+ ··· 248u + 4921)
2
· (u
36
+ 3u
35
+ ··· + 948u + 193)(u
38
+ 11u
36
+ ··· + 39u
2
+ 1)
c
5
, c
12
(u 1)(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
18
u
17
+ ··· + 6u 1)(u
20
+ u
19
+ ··· u + 1)(u
26
+ u
25
+ ··· + u + 1)
· (u
36
+ u
35
+ ··· + 2u
2
+ 1)(u
38
+ 2u
37
+ ··· + 5u + 1)
· (u
72
u
71
+ ··· + 276774u + 52573)
c
6
u
9
(u + 1)
19
(u
2
+ u + 1)
18
(u
4
+ u
3
2u + 1)
18
· (u
20
19u
19
+ ··· 4045u + 419)
· (u
26
27u
25
+ ··· 29107u + 2239)(u
38
+ 14u
37
+ ··· u + 1)
c
8
u(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
14
· ((u
13
12u
12
+ ··· + 210u + 4)
2
)(u
20
18u
19
+ ··· 24920u + 3688)
· (u
38
39u
34
+ ··· 12u
2
+ 1)
c
9
u
9
(u 1)(u + 1)
18
(u
2
+ u + 1)
18
(u
4
+ u
3
2u + 1)
18
· (u
20
19u
19
+ ··· 4045u + 419)
· (u
26
27u
25
+ ··· 29107u + 2239)(u
38
14u
37
+ ··· + u + 1)
51
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
15
· ((y
13
+ 2y
12
+ ··· 656y 256)
2
)(y
19
+ y
18
+ ··· + 34y 1)
2
· (y
20
2y
19
+ ··· 23040y + 4096)
c
2
, c
7
y(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
15
· ((y
13
6y
12
+ ··· + 12y 16)
2
)(y
19
11y
18
+ ··· 2y + 1)
2
· (y
20
10y
19
+ ··· + 160y + 64)
c
3
, c
5
, c
10
c
12
(y 1)(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
18
9y
17
+ ··· 36y + 1)(y
20
y
19
+ ··· + 11y + 1)
· (y
26
3y
25
+ ··· y + 1)(y
36
9y
35
+ ··· + 4y + 1)
· (y
38
14y
37
+ ··· + 31y + 1)
· (y
72
27y
71
+ ··· 85049384088y + 2763920329)
c
4
, c
11
y(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
3
· ((y
13
+ 2y
12
+ ··· y 1)
2
)(y
19
+ 11y
18
+ ··· + 39y + 1)
2
· (y
20
+ 21y
19
+ ··· + 10448y + 676)
· (y
36
21y
35
+ ··· + 837524y + 37249)
· (y
36
+ 39y
35
+ ··· + 446076356y + 24216241)
2
c
6
, c
9
y
9
(y 1)
19
(y
2
+ y + 1)
18
(y
4
y
3
+ 6y
2
4y + 1)
18
· (y
20
9y
19
+ ··· 853997y + 175561)
· (y
26
13y
25
+ ··· + 24344647y + 5013121)
· (y
38
20y
37
+ ··· 21y + 1)
c
8
y(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
15
· ((y
13
+ 2y
12
+ ··· + 52908y 16)
2
)(y
19
39y
17
+ ··· 12y + 1)
2
· (y
20
4y
19
+ ··· + 14317984y + 13601344)
52