12a
0787
(K12a
0787
)
A knot diagram
1
Linearized knot diagam
3 8 11 10 12 9 2 7 1 4 6 5
Solving Sequence
5,10
4 11
1,3
2 9 12 6 7 8
c
4
c
10
c
3
c
1
c
9
c
12
c
5
c
6
c
8
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
27
+ u
26
+ ··· + 16a + 1, u
28
+ 17u
26
+ ··· u + 1i
I
u
2
= h−2521899524065u
37
1276991146481u
36
+ ··· + 13233245626882b + 40729676197632,
9138522337506u
37
7893613959922u
36
+ ··· + 13233245626882a + 87046035891719,
u
38
+ u
37
+ ··· 7u + 2i
I
u
3
= hb + u, a
4
+ a
3
+ 3a
2
+ 2a + 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
27
+ u
26
+ · · · + 16a + 1, u
28
+ 17u
26
+ · · · u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
1
16
u
27
1
16
u
26
+ ··· + 3u
1
16
u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
1
16
u
27
1
16
u
26
+ ··· + 2u
1
16
1
16
u
27
1
16
u
26
+ ··· + u
1
16
a
9
=
1
8
u
25
1
8
u
24
+ ···
87
8
u
3
1
8
1
16
u
27
1
16
u
26
+ ··· + u
1
16
a
12
=
1
16
u
27
1
16
u
26
+ ··· + 2u
1
16
u
a
6
=
1
16
u
27
1
16
u
26
+ ··· +
1
8
u +
15
16
u
2
a
7
=
0.687500u
27
+ 0.437500u
26
+ ··· 1.62500u + 1.56250
1
16
u
27
1
16
u
26
+ ···
1
4
u +
1
16
a
8
=
0.187500u
27
+ 0.187500u
26
+ ··· + 0.375000u + 1.31250
1
4
u
27
+
3
8
u
26
+ ··· +
7
8
u +
5
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
4
u
27
1
4
u
26
+ ···
9
2
u 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
28
+ 7u
27
+ ··· + 9u + 4
c
2
, c
7
u
28
+ 3u
27
+ ··· u + 2
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
28
+ 17u
26
+ ··· + u + 1
c
9
u
28
21u
27
+ ··· 24293u + 2642
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
28
+ 29y
27
+ ··· + 383y + 16
c
2
, c
7
y
28
7y
27
+ ··· 9y + 4
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
28
+ 34y
27
+ ··· + 5y + 1
c
9
y
28
+ y
27
+ ··· + 72951y + 6980164
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668490 + 0.320146I
a = 1.70913 + 0.46510I
b = 0.668490 + 0.320146I
6.28423 + 6.57769I 6.41221 7.42471I
u = 0.668490 0.320146I
a = 1.70913 0.46510I
b = 0.668490 0.320146I
6.28423 6.57769I 6.41221 + 7.42471I
u = 0.675753 + 0.283618I
a = 1.69364 + 0.41228I
b = 0.675753 + 0.283618I
6.57383 0.38638I 7.28743 + 2.11062I
u = 0.675753 0.283618I
a = 1.69364 0.41228I
b = 0.675753 0.283618I
6.57383 + 0.38638I 7.28743 2.11062I
u = 0.010002 + 1.361850I
a = 0.08812 1.82299I
b = 0.010002 + 1.361850I
0.98241 + 3.28877I 2.28562 2.49826I
u = 0.010002 1.361850I
a = 0.08812 + 1.82299I
b = 0.010002 1.361850I
0.98241 3.28877I 2.28562 + 2.49826I
u = 0.479155 + 0.323957I
a = 1.41870 + 0.64071I
b = 0.479155 + 0.323957I
0.70246 + 3.29244I 1.36299 9.65780I
u = 0.479155 0.323957I
a = 1.41870 0.64071I
b = 0.479155 0.323957I
0.70246 3.29244I 1.36299 + 9.65780I
u = 0.018495 + 0.555616I
a = 0.11963 + 2.15929I
b = 0.018495 + 0.555616I
5.02040 3.10627I 5.07926 + 2.30848I
u = 0.018495 0.555616I
a = 0.11963 2.15929I
b = 0.018495 0.555616I
5.02040 + 3.10627I 5.07926 2.30848I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.12806 + 1.49665I
a = 0.635356 0.790802I
b = 0.12806 + 1.49665I
8.20165 + 3.12776I 1.78341 2.86928I
u = 0.12806 1.49665I
a = 0.635356 + 0.790802I
b = 0.12806 1.49665I
8.20165 3.12776I 1.78341 + 2.86928I
u = 0.467343 + 0.123789I
a = 1.256740 + 0.253657I
b = 0.467343 + 0.123789I
0.942412 0.321823I 9.93783 + 1.87531I
u = 0.467343 0.123789I
a = 1.256740 0.253657I
b = 0.467343 0.123789I
0.942412 + 0.321823I 9.93783 1.87531I
u = 0.33592 + 1.48906I
a = 1.343430 0.294813I
b = 0.33592 + 1.48906I
4.85757 + 8.12866I 0.65039 3.19597I
u = 0.33592 1.48906I
a = 1.343430 + 0.294813I
b = 0.33592 1.48906I
4.85757 8.12866I 0.65039 + 3.19597I
u = 0.24720 + 1.51029I
a = 1.054950 0.471434I
b = 0.24720 + 1.51029I
10.29860 + 5.81281I 1.13573 2.99582I
u = 0.24720 1.51029I
a = 1.054950 + 0.471434I
b = 0.24720 1.51029I
10.29860 5.81281I 1.13573 + 2.99582I
u = 0.34687 + 1.50237I
a = 1.331920 0.237656I
b = 0.34687 + 1.50237I
5.4858 14.4431I 1.57414 + 7.85260I
u = 0.34687 1.50237I
a = 1.331920 + 0.237656I
b = 0.34687 1.50237I
5.4858 + 14.4431I 1.57414 7.85260I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.09545 + 1.55729I
a = 0.408600 0.576483I
b = 0.09545 + 1.55729I
9.25929 + 2.16393I 3.88367 2.85288I
u = 0.09545 1.55729I
a = 0.408600 + 0.576483I
b = 0.09545 1.55729I
9.25929 2.16393I 3.88367 + 2.85288I
u = 0.28719 + 1.53991I
a = 1.099080 0.292514I
b = 0.28719 + 1.53991I
13.1202 9.6253I 6.14913 + 7.05980I
u = 0.28719 1.53991I
a = 1.099080 + 0.292514I
b = 0.28719 1.53991I
13.1202 + 9.6253I 6.14913 7.05980I
u = 0.21010 + 1.56283I
a = 0.823988 0.384208I
b = 0.21010 + 1.56283I
14.2962 3.2369I 8.20460 + 0.I
u = 0.21010 1.56283I
a = 0.823988 + 0.384208I
b = 0.21010 1.56283I
14.2962 + 3.2369I 8.20460 + 0.I
u = 0.195378 + 0.368416I
a = 0.744647 + 1.097280I
b = 0.195378 + 0.368416I
1.28464 0.85587I 2.41301 + 0.23823I
u = 0.195378 0.368416I
a = 0.744647 1.097280I
b = 0.195378 0.368416I
1.28464 + 0.85587I 2.41301 0.23823I
7
II.
I
u
2
= h−2.52×10
12
u
37
1.28×10
12
u
36
+· · ·+1.32×10
13
b+4.07×10
13
, 9.14×
10
12
u
37
7.89×10
12
u
36
+· · ·+1.32×10
13
a+8.70×10
13
, u
38
+u
37
+· · ·7u+2i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
0.690573u
37
+ 0.596499u
36
+ ··· + 27.4552u 6.57783
0.190573u
37
+ 0.0964987u
36
+ ··· + 7.95523u 3.07783
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.504054u
37
+ 0.688185u
36
+ ··· + 16.6062u 3.16265
0.385043u
37
+ 0.407527u
36
+ ··· + 10.1840u 3.31197
a
9
=
1.06524u
37
+ 0.963635u
36
+ ··· + 35.3708u 9.46751
0.374672u
37
+ 0.367136u
36
+ ··· + 8.91556u 2.88968
a
12
=
1
2
u
37
+
1
2
u
36
+ ··· +
39
2
u
7
2
0.190573u
37
+ 0.0964987u
36
+ ··· + 7.95523u 3.07783
a
6
=
1.53891u
37
+ 1.72949u
36
+ ··· + 25.2431u 1.81717
0.0940743u
37
+ 0.0900246u
36
+ ··· 1.74382u + 0.618854
a
7
=
0.540566u
37
0.819412u
36
+ ··· 5.62383u 4.68707
0.203220u
37
0.490174u
36
+ ··· 4.02159u 2.26098
a
8
=
0.215007u
37
+ 0.108358u
36
+ ··· 9.07233u + 2.38121
0.203697u
37
0.475149u
36
+ ··· 4.71463u 1.10982
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2578336863836
6616622813441
u
37
917470771354
6616622813441
u
36
+ ··· +
231718964327524
6616622813441
u
47642846027518
6616622813441
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
(u
19
+ 5u
18
+ ··· + 2u + 1)
2
c
2
, c
7
(u
19
u
18
+ ··· + u
2
1)
2
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
38
u
37
+ ··· + 7u + 2
c
9
(u
19
+ 7u
18
+ ··· + 2u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
(y
19
+ 19y
18
+ ··· + 10y 1)
2
c
2
, c
7
(y
19
5y
18
+ ··· + 2y 1)
2
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
38
+ 31y
37
+ ··· + 107y + 4
c
9
(y
19
+ 11y
18
+ ··· + 42y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.745217 + 0.660881I
a = 0.786897 0.760848I
b = 0.03575 1.42698I
6.91199 + 0.16816I 6.16829 0.91431I
u = 0.745217 0.660881I
a = 0.786897 + 0.760848I
b = 0.03575 + 1.42698I
6.91199 0.16816I 6.16829 + 0.91431I
u = 0.909367 + 0.387387I
a = 1.17340 1.04324I
b = 0.24265 1.43973I
0.60648 9.88550I 1.13872 + 7.31129I
u = 0.909367 0.387387I
a = 1.17340 + 1.04324I
b = 0.24265 + 1.43973I
0.60648 + 9.88550I 1.13872 7.31129I
u = 0.835357 + 0.509822I
a = 1.020060 0.906332I
b = 0.14784 1.43865I
6.41945 5.52702I 4.42794 + 7.00248I
u = 0.835357 0.509822I
a = 1.020060 + 0.906332I
b = 0.14784 + 1.43865I
6.41945 + 5.52702I 4.42794 7.00248I
u = 0.881694 + 0.365628I
a = 1.21257 1.01487I
b = 0.24482 1.41618I
1.12421 + 3.71612I 2.19900 2.45937I
u = 0.881694 0.365628I
a = 1.21257 + 1.01487I
b = 0.24482 + 1.41618I
1.12421 3.71612I 2.19900 + 2.45937I
u = 0.190982 + 1.053290I
a = 0.0243158 0.1341050I
b = 0.190982 1.053290I
4.19724 7.47222 + 0.I
u = 0.190982 1.053290I
a = 0.0243158 + 0.1341050I
b = 0.190982 + 1.053290I
4.19724 7.47222 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618900 + 0.885728I
a = 0.403494 0.627123I
b = 0.126589 1.385740I
0.45606 + 1.53005I 0.20605 2.54963I
u = 0.618900 0.885728I
a = 0.403494 + 0.627123I
b = 0.126589 + 1.385740I
0.45606 1.53005I 0.20605 + 2.54963I
u = 0.681822 + 0.866267I
a = 0.455615 0.712832I
b = 0.10542 1.42563I
0.85217 + 4.39903I 0.93348 2.80289I
u = 0.681822 0.866267I
a = 0.455615 + 0.712832I
b = 0.10542 + 1.42563I
0.85217 4.39903I 0.93348 + 2.80289I
u = 0.704452 + 0.498527I
a = 1.061700 0.694204I
b = 0.115852 1.363560I
3.75823 + 2.32534I 1.72826 3.09456I
u = 0.704452 0.498527I
a = 1.061700 + 0.694204I
b = 0.115852 + 1.363560I
3.75823 2.32534I 1.72826 + 3.09456I
u = 0.063360 + 1.136750I
a = 0.279755 + 0.579784I
b = 0.230874 0.297193I
1.87881 1.72326I 3.81965 + 5.18112I
u = 0.063360 1.136750I
a = 0.279755 0.579784I
b = 0.230874 + 0.297193I
1.87881 + 1.72326I 3.81965 5.18112I
u = 0.068851 + 0.792352I
a = 0.19917 + 1.58842I
b = 0.090322 + 0.335817I
5.01775 3.11880I 5.58624 + 2.69239I
u = 0.068851 0.792352I
a = 0.19917 1.58842I
b = 0.090322 0.335817I
5.01775 + 3.11880I 5.58624 2.69239I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.115852 + 1.363560I
a = 0.766315 + 0.229589I
b = 0.704452 0.498527I
3.75823 2.32534I 2.00000 + 3.09456I
u = 0.115852 1.363560I
a = 0.766315 0.229589I
b = 0.704452 + 0.498527I
3.75823 + 2.32534I 2.00000 3.09456I
u = 0.126589 + 1.385740I
a = 0.553523 0.170066I
b = 0.618900 0.885728I
0.45606 1.53005I 0. + 2.54963I
u = 0.126589 1.385740I
a = 0.553523 + 0.170066I
b = 0.618900 + 0.885728I
0.45606 + 1.53005I 0. 2.54963I
u = 0.03575 + 1.42698I
a = 0.762764 + 0.039458I
b = 0.745217 0.660881I
6.91199 0.16816I 6.16829 + 0.I
u = 0.03575 1.42698I
a = 0.762764 0.039458I
b = 0.745217 + 0.660881I
6.91199 + 0.16816I 6.16829 + 0.I
u = 0.10542 + 1.42563I
a = 0.630237 0.168639I
b = 0.681822 0.866267I
0.85217 4.39903I 0. + 2.80289I
u = 0.10542 1.42563I
a = 0.630237 + 0.168639I
b = 0.681822 + 0.866267I
0.85217 + 4.39903I 0. 2.80289I
u = 0.24482 + 1.41618I
a = 1.000220 + 0.320005I
b = 0.881694 0.365628I
1.12421 3.71612I 0
u = 0.24482 1.41618I
a = 1.000220 0.320005I
b = 0.881694 + 0.365628I
1.12421 + 3.71612I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.14784 + 1.43865I
a = 0.906043 + 0.178010I
b = 0.835357 0.509822I
6.41945 + 5.52702I 4.42794 7.00248I
u = 0.14784 1.43865I
a = 0.906043 0.178010I
b = 0.835357 + 0.509822I
6.41945 5.52702I 4.42794 + 7.00248I
u = 0.24265 + 1.43973I
a = 1.023190 + 0.288002I
b = 0.909367 0.387387I
0.60648 + 9.88550I 0. 7.31129I
u = 0.24265 1.43973I
a = 1.023190 0.288002I
b = 0.909367 + 0.387387I
0.60648 9.88550I 0. + 7.31129I
u = 0.230874 + 0.297193I
a = 1.69352 + 0.96168I
b = 0.063360 1.136750I
1.87881 + 1.72326I 3.81965 5.18112I
u = 0.230874 0.297193I
a = 1.69352 0.96168I
b = 0.063360 + 1.136750I
1.87881 1.72326I 3.81965 + 5.18112I
u = 0.090322 + 0.335817I
a = 0.81574 + 3.56928I
b = 0.068851 + 0.792352I
5.01775 3.11880I 5.58624 + 2.69239I
u = 0.090322 0.335817I
a = 0.81574 3.56928I
b = 0.068851 0.792352I
5.01775 + 3.11880I 5.58624 2.69239I
14
III. I
u
3
= hb + u, a
4
+ a
3
+ 3a
2
+ 2a + 1, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
1
a
11
=
u
0
a
1
=
a
u
a
3
=
0
1
a
2
=
a
a u
a
9
=
a
2
u
a + u
a
12
=
a + u
u
a
6
=
au
1
a
7
=
a
3
u + au
a
2
au + 1
a
8
=
a
3
u + a
2
u + 2au + u
a
3
+ a
2
u 2a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
4a
2
12a 8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
4
u
3
+ 3u
2
2u + 1)
2
c
2
, c
7
u
8
u
6
+ 3u
4
2u
2
+ 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
(u
2
+ 1)
4
c
8
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
9
u
8
5u
6
+ 7u
4
2u
2
+ 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
7
(y
4
y
3
+ 3y
2
2y + 1)
2
c
3
, c
4
, c
5
c
10
, c
11
, c
12
(y + 1)
8
c
9
(y
4
5y
3
+ 7y
2
2y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.395123 + 0.506844I
b = 1.000000I
3.50087 + 1.41510I 3.82674 4.90874I
u = 1.000000I
a = 0.395123 0.506844I
b = 1.000000I
3.50087 1.41510I 3.82674 + 4.90874I
u = 1.000000I
a = 0.10488 + 1.55249I
b = 1.000000I
3.50087 + 3.16396I 0.17326 2.56480I
u = 1.000000I
a = 0.10488 1.55249I
b = 1.000000I
3.50087 3.16396I 0.17326 + 2.56480I
u = 1.000000I
a = 0.395123 + 0.506844I
b = 1.000000I
3.50087 + 1.41510I 3.82674 4.90874I
u = 1.000000I
a = 0.395123 0.506844I
b = 1.000000I
3.50087 1.41510I 3.82674 + 4.90874I
u = 1.000000I
a = 0.10488 + 1.55249I
b = 1.000000I
3.50087 + 3.16396I 0.17326 2.56480I
u = 1.000000I
a = 0.10488 1.55249I
b = 1.000000I
3.50087 3.16396I 0.17326 + 2.56480I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
19
+ 5u
18
+ ··· + 2u + 1)
2
· (u
28
+ 7u
27
+ ··· + 9u + 4)
c
2
, c
7
(u
8
u
6
+ 3u
4
2u
2
+ 1)(u
19
u
18
+ ··· + u
2
1)
2
· (u
28
+ 3u
27
+ ··· u + 2)
c
3
, c
4
, c
5
c
10
, c
11
, c
12
((u
2
+ 1)
4
)(u
28
+ 17u
26
+ ··· + u + 1)(u
38
u
37
+ ··· + 7u + 2)
c
8
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
19
+ 5u
18
+ ··· + 2u + 1)
2
· (u
28
+ 7u
27
+ ··· + 9u + 4)
c
9
(u
8
5u
6
+ 7u
4
2u
2
+ 1)(u
19
+ 7u
18
+ ··· + 2u 1)
2
· (u
28
21u
27
+ ··· 24293u + 2642)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
19
+ 19y
18
+ ··· + 10y 1)
2
· (y
28
+ 29y
27
+ ··· + 383y + 16)
c
2
, c
7
((y
4
y
3
+ 3y
2
2y + 1)
2
)(y
19
5y
18
+ ··· + 2y 1)
2
· (y
28
7y
27
+ ··· 9y + 4)
c
3
, c
4
, c
5
c
10
, c
11
, c
12
((y + 1)
8
)(y
28
+ 34y
27
+ ··· + 5y + 1)(y
38
+ 31y
37
+ ··· + 107y + 4)
c
9
((y
4
5y
3
+ 7y
2
2y + 1)
2
)(y
19
+ 11y
18
+ ··· + 42y 1)
2
· (y
28
+ y
27
+ ··· + 72951y + 6980164)
20