12a
0791
(K12a
0791
)
A knot diagram
1
Linearized knot diagam
3 8 11 12 10 9 2 7 6 1 4 5
Solving Sequence
2,7
8 3 9 1 6 10 11 4 5 12
c
7
c
2
c
8
c
1
c
6
c
9
c
10
c
3
c
5
c
12
c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
31
u
30
+ ··· 2u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
31
u
30
+ · · · 2u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
6
=
u
4
u
2
+ 1
u
4
a
10
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
11
=
u
14
u
12
+ 4u
10
3u
8
+ 2u
6
2u
2
+ 1
u
16
2u
14
+ 6u
12
8u
10
+ 10u
8
6u
6
+ 4u
4
a
4
=
u
27
2u
25
+ ··· + 12u
5
5u
3
u
29
3u
27
+ ··· u
3
+ u
a
5
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
8
2u
4
a
12
=
u
21
+ 2u
19
+ ··· + 6u
3
u
u
21
u
19
+ 7u
17
6u
15
+ 16u
13
11u
11
+ 13u
9
6u
7
+ 3u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
30
12u
28
+ 4u
27
+ 60u
26
8u
25
136u
24
+ 44u
23
+ 344u
22
72u
21
592u
20
+
184u
19
+ 960u
18
240u
17
1232u
16
+ 372u
15
+ 1356u
14
376u
13
1232u
12
+ 388u
11
+
896u
10
300u
9
504u
8
+ 204u
7
+ 204u
6
112u
5
40u
4
+ 40u
3
12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
9
u
31
+ 5u
30
+ ··· + 4u + 1
c
2
, c
7
u
31
+ u
30
+ ··· + 2u
2
1
c
3
, c
4
, c
11
c
12
u
31
u
30
+ ··· 2u 1
c
10
u
31
+ 11u
30
+ ··· + 904u + 329
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
9
y
31
+ 43y
30
+ ··· 32y 1
c
2
, c
7
y
31
5y
30
+ ··· + 4y 1
c
3
, c
4
, c
11
c
12
y
31
37y
30
+ ··· + 4y 1
c
10
y
31
25y
30
+ ··· 9232y 108241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.791350 + 0.665692I
2.77292 + 2.49031I 0.70638 3.36912I
u = 0.791350 0.665692I
2.77292 2.49031I 0.70638 + 3.36912I
u = 0.734968 + 0.730997I
5.22440 + 0.49349I 6.40243 1.42889I
u = 0.734968 0.730997I
5.22440 0.49349I 6.40243 + 1.42889I
u = 0.862163 + 0.360448I
6.88853 4.31158I 1.70139 + 6.75618I
u = 0.862163 0.360448I
6.88853 + 4.31158I 1.70139 6.75618I
u = 0.720478 + 0.790919I
13.50980 2.17197I 7.93260 + 0.27794I
u = 0.720478 0.790919I
13.50980 + 2.17197I 7.93260 0.27794I
u = 0.861511 + 0.679212I
4.80823 5.72178I 4.77645 + 8.09118I
u = 0.861511 0.679212I
4.80823 + 5.72178I 4.77645 8.09118I
u = 0.906594 + 0.698694I
12.8848 + 7.6593I 6.39810 6.24102I
u = 0.906594 0.698694I
12.8848 7.6593I 6.39810 + 6.24102I
u = 0.853762
5.04240 2.72190
u = 0.778513 + 0.296852I
0.36181 + 2.94393I 1.66820 9.97564I
u = 0.778513 0.296852I
0.36181 2.94393I 1.66820 + 9.97564I
u = 0.704905 + 0.147061I
1.148080 0.379484I 7.32750 + 0.54568I
u = 0.704905 0.147061I
1.148080 + 0.379484I 7.32750 0.54568I
u = 0.946436 + 0.923716I
12.91130 3.39712I 2.13967 + 2.24704I
u = 0.946436 0.923716I
12.91130 + 3.39712I 2.13967 2.24704I
u = 0.937373 + 0.934900I
15.4949 0.4280I 6.07033 + 1.46342I
u = 0.937373 0.934900I
15.4949 + 0.4280I 6.07033 1.46342I
u = 0.933748 + 0.947021I
15.3696 + 2.7248I 7.83122 0.36082I
u = 0.933748 0.947021I
15.3696 2.7248I 7.83122 + 0.36082I
u = 0.960199 + 0.921928I
15.4193 + 7.2526I 5.88050 5.99908I
u = 0.960199 0.921928I
15.4193 7.2526I 5.88050 + 5.99908I
u = 0.971666 + 0.924478I
15.4964 9.5974I 7.61372 + 4.81531I
u = 0.971666 0.924478I
15.4964 + 9.5974I 7.61372 4.81531I
u = 0.286578 + 0.593109I
8.74676 + 0.94916I 8.06495 0.10527I
u = 0.286578 0.593109I
8.74676 0.94916I 8.06495 + 0.10527I
u = 0.280590 + 0.401102I
1.103510 0.348173I 7.83889 + 1.08782I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.280590 0.401102I
1.103510 + 0.348173I 7.83889 1.08782I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
9
u
31
+ 5u
30
+ ··· + 4u + 1
c
2
, c
7
u
31
+ u
30
+ ··· + 2u
2
1
c
3
, c
4
, c
11
c
12
u
31
u
30
+ ··· 2u 1
c
10
u
31
+ 11u
30
+ ··· + 904u + 329
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
9
y
31
+ 43y
30
+ ··· 32y 1
c
2
, c
7
y
31
5y
30
+ ··· + 4y 1
c
3
, c
4
, c
11
c
12
y
31
37y
30
+ ··· + 4y 1
c
10
y
31
25y
30
+ ··· 9232y 108241
8