12a
0794
(K12a
0794
)
A knot diagram
1
Linearized knot diagam
3 8 11 12 1 9 10 2 7 6 4 5
Solving Sequence
4,12
5 1 6 11
3,8
2 9 10 7
c
4
c
12
c
5
c
11
c
3
c
2
c
8
c
10
c
7
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
41
+ 25u
39
+ ··· + b u, u
45
+ u
44
+ ··· + a + 1, u
47
+ 2u
46
+ ··· 2u 1i
I
u
2
= hb + u, a + 1, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
41
+25u
39
+· · ·+bu, u
45
+u
44
+· · ·+a+1, u
47
+2u
46
+· · ·2u1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
u
a
3
=
u
2
+ 1
u
2
a
8
=
u
45
u
44
+ ··· 9u 1
u
41
25u
39
+ ··· + 8u
2
+ u
a
2
=
u
7
4u
5
+ 4u
3
2u
u
7
3u
5
+ u
a
9
=
2u
46
u
45
+ ··· 20u
2
7u
2u
46
+ 58u
44
+ ··· + 4u + 2
a
10
=
u
7
+ 4u
5
4u
3
+ 2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
7
=
u
46
u
45
+ ··· 19u
2
7u
u
46
+ 29u
44
+ ··· + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
46
+ 11u
45
+ ··· u 13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
47
+ 15u
46
+ ··· 8u 16
c
2
, c
8
u
47
u
46
+ ··· + 4u + 4
c
3
, c
4
, c
5
c
11
, c
12
u
47
+ 2u
46
+ ··· 2u 1
c
6
, c
7
, c
9
u
47
3u
46
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
47
+ 31y
46
+ ··· + 16672y 256
c
2
, c
8
y
47
+ 15y
46
+ ··· 8y 16
c
3
, c
4
, c
5
c
11
, c
12
y
47
60y
46
+ ··· + 18y 1
c
6
, c
7
, c
9
y
47
39y
46
+ ··· + 37y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.922487 + 0.402677I
a = 0.207419 + 0.251166I
b = 1.74840 + 0.71063I
3.29083 10.41820I 13.6071 + 8.5049I
u = 0.922487 0.402677I
a = 0.207419 0.251166I
b = 1.74840 0.71063I
3.29083 + 10.41820I 13.6071 8.5049I
u = 0.879259 + 0.378637I
a = 0.457803 0.144632I
b = 1.55193 0.79861I
1.34378 6.10986I 9.33039 + 6.97853I
u = 0.879259 0.378637I
a = 0.457803 + 0.144632I
b = 1.55193 + 0.79861I
1.34378 + 6.10986I 9.33039 6.97853I
u = 0.938794
a = 0.801843
b = 1.64853
5.57924 16.5310
u = 0.868977 + 0.342519I
a = 0.139578 0.719067I
b = 0.79264 1.61212I
2.03144 + 4.33676I 12.48751 4.75672I
u = 0.868977 0.342519I
a = 0.139578 + 0.719067I
b = 0.79264 + 1.61212I
2.03144 4.33676I 12.48751 + 4.75672I
u = 1.058930 + 0.178373I
a = 0.112920 + 0.790693I
b = 0.911890 + 0.265216I
9.70306 3.81664I 19.0886 + 0.I
u = 1.058930 0.178373I
a = 0.112920 0.790693I
b = 0.911890 0.265216I
9.70306 + 3.81664I 19.0886 + 0.I
u = 0.921531 + 0.084288I
a = 0.162135 1.014360I
b = 0.416091 + 0.386772I
3.72700 1.88166I 16.5807 + 5.1639I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921531 0.084288I
a = 0.162135 + 1.014360I
b = 0.416091 0.386772I
3.72700 + 1.88166I 16.5807 5.1639I
u = 0.823939 + 0.323444I
a = 0.758346 0.139257I
b = 1.28476 + 0.85339I
1.70171 1.67890I 12.57865 + 4.15714I
u = 0.823939 0.323444I
a = 0.758346 + 0.139257I
b = 1.28476 0.85339I
1.70171 + 1.67890I 12.57865 4.15714I
u = 0.788716 + 0.376916I
a = 0.038734 + 0.507346I
b = 0.37806 + 1.48663I
1.90040 + 0.48777I 7.77695 1.43919I
u = 0.788716 0.376916I
a = 0.038734 0.507346I
b = 0.37806 1.48663I
1.90040 0.48777I 7.77695 + 1.43919I
u = 0.722890 + 0.438021I
a = 0.212238 0.290704I
b = 0.01128 1.43133I
2.10005 3.33842I 12.59413 + 1.70307I
u = 0.722890 0.438021I
a = 0.212238 + 0.290704I
b = 0.01128 + 1.43133I
2.10005 + 3.33842I 12.59413 1.70307I
u = 0.707872
a = 0.283787
b = 0.561800
1.23668 7.22640
u = 0.091614 + 0.630031I
a = 1.98364 + 0.95299I
b = 0.058376 0.279803I
0.19552 + 6.93392I 8.85712 6.12963I
u = 0.091614 0.630031I
a = 1.98364 0.95299I
b = 0.058376 + 0.279803I
0.19552 6.93392I 8.85712 + 6.12963I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.359859 + 0.483165I
a = 0.656484 0.454728I
b = 0.334069 + 0.541724I
5.17789 + 1.63722I 14.9295 4.4051I
u = 0.359859 0.483165I
a = 0.656484 + 0.454728I
b = 0.334069 0.541724I
5.17789 1.63722I 14.9295 + 4.4051I
u = 0.042621 + 0.595199I
a = 2.13353 0.70781I
b = 0.033126 + 0.376700I
4.14501 + 2.81372I 3.74235 3.47320I
u = 0.042621 0.595199I
a = 2.13353 + 0.70781I
b = 0.033126 0.376700I
4.14501 2.81372I 3.74235 + 3.47320I
u = 0.026672 + 0.550563I
a = 2.30737 + 0.41380I
b = 0.041983 0.497420I
0.68616 1.29934I 6.70637 + 0.78568I
u = 0.026672 0.550563I
a = 2.30737 0.41380I
b = 0.041983 + 0.497420I
0.68616 + 1.29934I 6.70637 0.78568I
u = 1.60695 + 0.08305I
a = 0.81808 1.54422I
b = 1.04952 1.97872I
9.99222 + 1.51631I 0
u = 1.60695 0.08305I
a = 0.81808 + 1.54422I
b = 1.04952 + 1.97872I
9.99222 1.51631I 0
u = 1.64487
a = 1.09171
b = 1.39259
9.58532 0
u = 1.65147 + 0.08372I
a = 1.39395 + 1.50228I
b = 1.79104 + 1.91409I
6.56652 2.13795I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65147 0.08372I
a = 1.39395 1.50228I
b = 1.79104 1.91409I
6.56652 + 2.13795I 0
u = 1.67028 + 0.07675I
a = 2.75333 + 1.26536I
b = 4.10758 + 2.30271I
10.45730 + 3.15004I 0
u = 1.67028 0.07675I
a = 2.75333 1.26536I
b = 4.10758 2.30271I
10.45730 3.15004I 0
u = 0.206634 + 0.252843I
a = 1.085750 0.522131I
b = 0.141040 0.446675I
0.336379 + 0.800443I 8.09599 8.50563I
u = 0.206634 0.252843I
a = 1.085750 + 0.522131I
b = 0.141040 + 0.446675I
0.336379 0.800443I 8.09599 + 8.50563I
u = 1.67880 + 0.08607I
a = 1.81262 1.55075I
b = 2.32616 1.96566I
10.96150 5.96484I 0
u = 1.67880 0.08607I
a = 1.81262 + 1.55075I
b = 2.32616 + 1.96566I
10.96150 + 5.96484I 0
u = 1.67889 + 0.09711I
a = 2.97433 0.87020I
b = 4.36294 1.66384I
7.59134 + 7.93077I 0
u = 1.67889 0.09711I
a = 2.97433 + 0.87020I
b = 4.36294 + 1.66384I
7.59134 7.93077I 0
u = 1.69341 + 0.01645I
a = 0.66308 + 1.50099I
b = 0.98851 + 2.84605I
13.01140 + 2.24134I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.69341 0.01645I
a = 0.66308 1.50099I
b = 0.98851 2.84605I
13.01140 2.24134I 0
u = 1.69112 + 0.10759I
a = 3.04031 + 0.58781I
b = 4.39614 + 1.23773I
12.4253 + 12.4182I 0
u = 1.69112 0.10759I
a = 3.04031 0.58781I
b = 4.39614 1.23773I
12.4253 12.4182I 0
u = 1.69743
a = 2.16202
b = 2.74953
14.9500 0
u = 1.72282 + 0.03849I
a = 1.207830 0.382415I
b = 1.73369 1.18160I
19.6013 + 4.6509I 0
u = 1.72282 0.03849I
a = 1.207830 + 0.382415I
b = 1.73369 + 1.18160I
19.6013 4.6509I 0
u = 0.239957
a = 3.06923
b = 0.661230
2.02254 2.40680
9
II. I
u
2
= hb + u, a + 1, u
2
u 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u + 1
a
1
=
u
u 1
a
6
=
u
u
a
11
=
u
u
a
3
=
u
u 1
a
8
=
1
u
a
2
=
u
u 1
a
9
=
1
u
a
10
=
u
u
a
7
=
u 1
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
10
u
2
c
3
, c
4
, c
5
u
2
u 1
c
6
, c
7
(u 1)
2
c
9
(u + 1)
2
c
11
, c
12
u
2
+ u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
c
10
y
2
c
3
, c
4
, c
5
c
11
, c
12
y
2
3y + 1
c
6
, c
7
, c
9
(y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 0.618034
2.63189 17.0000
u = 1.61803
a = 1.00000
b = 1.61803
10.5276 17.0000
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
u
2
(u
47
+ 15u
46
+ ··· 8u 16)
c
2
, c
8
u
2
(u
47
u
46
+ ··· + 4u + 4)
c
3
, c
4
, c
5
(u
2
u 1)(u
47
+ 2u
46
+ ··· 2u 1)
c
6
, c
7
((u 1)
2
)(u
47
3u
46
+ ··· u + 1)
c
9
((u + 1)
2
)(u
47
3u
46
+ ··· u + 1)
c
11
, c
12
(u
2
+ u 1)(u
47
+ 2u
46
+ ··· 2u 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
2
(y
47
+ 31y
46
+ ··· + 16672y 256)
c
2
, c
8
y
2
(y
47
+ 15y
46
+ ··· 8y 16)
c
3
, c
4
, c
5
c
11
, c
12
(y
2
3y + 1)(y
47
60y
46
+ ··· + 18y 1)
c
6
, c
7
, c
9
((y 1)
2
)(y
47
39y
46
+ ··· + 37y 1)
15