12a
0800
(K12a
0800
)
A knot diagram
1
Linearized knot diagam
3 8 12 1 10 11 9 2 7 6 5 4
Solving Sequence
5,10
6 11 7
1,12
4 3 9 8 2
c
5
c
10
c
6
c
11
c
4
c
3
c
9
c
7
c
2
c
1
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u,
u
16
u
15
6u
14
+ 5u
13
+ 14u
12
8u
11
12u
10
u
9
6u
8
+ 14u
7
+ 16u
6
6u
5
4u
4
8u
3
4u
2
+ a + 2u,
u
17
u
16
+ ··· + 4u + 1i
I
u
2
= hu
29
10u
27
+ ··· + b + 1, u
28
+ 9u
26
+ ··· + a + 1, u
30
u
29
+ ··· + 2u 1i
I
u
3
= hb + 1, a, u 1i
* 3 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
16
u
15
+ · · · + a + 2u, u
17
u
16
+ · · · + 4u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
16
+ u
15
+ ··· + 4u
2
2u
u
a
12
=
u
3
2u
u
3
+ u
a
4
=
u
15
u
14
+ ··· 7u
2
4u
u
2
a
3
=
u
15
u
14
+ ··· 5u
2
4u
u
4
2u
2
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
2
=
u
16
+ u
15
+ ··· + 4u
2
3u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
+ 6u
15
+ 12u
14
38u
13
32u
12
+ 92u
11
+ 48u
10
78u
9
40u
8
56u
7
+ 132u
5
+ 48u
4
24u
3
40u
2
50u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
c
11
u
17
+ 3u
16
+ ··· 20u 4
c
2
, c
8
u
17
3u
16
+ ··· + 4u 2
c
3
, c
4
, c
5
c
6
, c
10
, c
12
u
17
u
16
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
11
y
17
+ 19y
16
+ ··· + 8y 16
c
2
, c
8
y
17
+ 3y
16
+ ··· 20y 4
c
3
, c
4
, c
5
c
6
, c
10
, c
12
y
17
15y
16
+ ··· 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.015819 + 0.919296I
a = 0.01726 1.91592I
b = 0.015819 + 0.919296I
12.59050 + 3.33698I 1.74242 2.42496I
u = 0.015819 0.919296I
a = 0.01726 + 1.91592I
b = 0.015819 0.919296I
12.59050 3.33698I 1.74242 + 2.42496I
u = 1.25414
a = 3.12432
b = 1.25414
6.31627 14.3970
u = 1.245520 + 0.229336I
a = 1.37037 2.30613I
b = 1.245520 + 0.229336I
3.83323 + 4.04550I 10.81210 4.36543I
u = 1.245520 0.229336I
a = 1.37037 + 2.30613I
b = 1.245520 0.229336I
3.83323 4.04550I 10.81210 + 4.36543I
u = 0.080998 + 0.665320I
a = 0.12402 1.59512I
b = 0.080998 + 0.665320I
3.24651 + 2.33383I 1.26781 4.48047I
u = 0.080998 0.665320I
a = 0.12402 + 1.59512I
b = 0.080998 0.665320I
3.24651 2.33383I 1.26781 + 4.48047I
u = 1.346580 + 0.091150I
a = 1.77757 0.81741I
b = 1.346580 + 0.091150I
10.21630 3.30364I 18.3839 + 4.0252I
u = 1.346580 0.091150I
a = 1.77757 + 0.81741I
b = 1.346580 0.091150I
10.21630 + 3.30364I 18.3839 4.0252I
u = 1.324670 + 0.275245I
a = 0.89163 1.84476I
b = 1.324670 + 0.275245I
5.62027 9.18761I 13.0093 + 8.4138I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.324670 0.275245I
a = 0.89163 + 1.84476I
b = 1.324670 0.275245I
5.62027 + 9.18761I 13.0093 8.4138I
u = 1.289570 + 0.434389I
a = 0.19449 2.10821I
b = 1.289570 + 0.434389I
4.65712 + 6.34473I 8.38113 3.64612I
u = 1.289570 0.434389I
a = 0.19449 + 2.10821I
b = 1.289570 0.434389I
4.65712 6.34473I 8.38113 + 3.64612I
u = 1.316590 + 0.436364I
a = 0.18956 2.01627I
b = 1.316590 + 0.436364I
4.26790 13.04860I 8.96446 + 7.94392I
u = 1.316590 0.436364I
a = 0.18956 + 2.01627I
b = 1.316590 0.436364I
4.26790 + 13.04860I 8.96446 7.94392I
u = 0.228864 + 0.240486I
a = 0.626966 0.762434I
b = 0.228864 + 0.240486I
0.289179 + 0.793664I 7.24014 8.54497I
u = 0.228864 0.240486I
a = 0.626966 + 0.762434I
b = 0.228864 0.240486I
0.289179 0.793664I 7.24014 + 8.54497I
6
II.
I
u
2
= hu
29
10u
27
+· · ·+b+1, u
28
+9u
26
+· · ·+a+1, u
30
u
29
+· · ·+2u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
28
9u
26
+ ··· 5u 1
u
29
+ 10u
27
+ ··· u 1
a
12
=
u
3
2u
u
3
+ u
a
4
=
u
27
10u
25
+ ··· 16u
2
6u
u
29
+ 9u
27
+ ··· + u 2
a
3
=
u
25
+ 8u
23
+ ··· 5u 1
2u
29
+ 19u
27
+ ··· + u 2
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
2
=
u
22
7u
20
+ ··· 4u 1
2u
29
+ 20u
27
+ ··· + u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
29
40u
27
4u
26
+ 176u
25
+ 36u
24
416u
23
140u
22
+ 476u
21
+ 280u
20
+ 56u
19
228u
18
892u
17
176u
16
+ 920u
15
+ 540u
14
+ 112u
13
300u
12
784u
11
236u
10
+
296u
9
+ 284u
8
+ 240u
7
+ 20u
6
112u
5
76u
4
48u
3
12u
2
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
c
11
(u
15
+ 3u
14
+ ··· + 8u
2
1)
2
c
2
, c
8
(u
15
+ u
14
+ ··· + 2u + 1)
2
c
3
, c
4
, c
5
c
6
, c
10
, c
12
u
30
u
29
+ ··· + 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
11
(y
15
+ 19y
14
+ ··· + 16y 1)
2
c
2
, c
8
(y
15
+ 3y
14
+ ··· + 8y
2
1)
2
c
3
, c
4
, c
5
c
6
, c
10
, c
12
y
30
21y
29
+ ··· 16y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.003710 + 0.352470I
a = 0.310106 + 0.106023I
b = 1.197040 + 0.205439I
3.26563 1.73642I 11.57231 + 4.08118I
u = 1.003710 0.352470I
a = 0.310106 0.106023I
b = 1.197040 0.205439I
3.26563 + 1.73642I 11.57231 4.08118I
u = 0.039142 + 0.923066I
a = 1.25369 + 1.52176I
b = 1.299550 0.440363I
8.49724 + 8.19235I 5.30498 5.35870I
u = 0.039142 0.923066I
a = 1.25369 1.52176I
b = 1.299550 + 0.440363I
8.49724 8.19235I 5.30498 + 5.35870I
u = 0.006457 + 0.907657I
a = 1.26734 + 1.55206I
b = 1.275180 0.450373I
8.68612 1.54935I 4.90398 + 0.66420I
u = 0.006457 0.907657I
a = 1.26734 1.55206I
b = 1.275180 + 0.450373I
8.68612 + 1.54935I 4.90398 0.66420I
u = 1.09543
a = 0.681427
b = 0.231455
2.03422 3.51620
u = 1.144780 + 0.271378I
a = 0.776168 + 0.778536I
b = 0.050886 0.582477I
0.109911 + 1.108490I 4.48602 0.68443I
u = 1.144780 0.271378I
a = 0.776168 0.778536I
b = 0.050886 + 0.582477I
0.109911 1.108490I 4.48602 + 0.68443I
u = 1.197040 + 0.205439I
a = 0.192214 0.213199I
b = 1.003710 + 0.352470I
3.26563 1.73642I 11.57231 + 4.08118I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.197040 0.205439I
a = 0.192214 + 0.213199I
b = 1.003710 0.352470I
3.26563 + 1.73642I 11.57231 4.08118I
u = 1.245200 + 0.056118I
a = 0.303735 + 0.483850I
b = 0.497721 0.447731I
4.53214 1.75942I 14.8508 + 5.0146I
u = 1.245200 0.056118I
a = 0.303735 0.483850I
b = 0.497721 + 0.447731I
4.53214 + 1.75942I 14.8508 5.0146I
u = 0.191672 + 0.711539I
a = 0.90899 + 1.57838I
b = 1.261970 0.268055I
0.87635 + 5.68434I 7.79510 7.47679I
u = 0.191672 0.711539I
a = 0.90899 1.57838I
b = 1.261970 + 0.268055I
0.87635 5.68434I 7.79510 + 7.47679I
u = 1.261970 + 0.268055I
a = 0.566534 + 0.872590I
b = 0.191672 0.711539I
0.87635 5.68434I 7.79510 + 7.47679I
u = 1.261970 0.268055I
a = 0.566534 0.872590I
b = 0.191672 + 0.711539I
0.87635 + 5.68434I 7.79510 7.47679I
u = 0.497721 + 0.447731I
a = 0.134683 + 1.055100I
b = 1.245200 0.056118I
4.53214 + 1.75942I 14.8508 5.0146I
u = 0.497721 0.447731I
a = 0.134683 1.055100I
b = 1.245200 + 0.056118I
4.53214 1.75942I 14.8508 + 5.0146I
u = 1.256250 + 0.462320I
a = 0.578274 0.179714I
b = 1.279350 + 0.437720I
4.73497 3.25615I 8.32867 + 2.40088I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.256250 0.462320I
a = 0.578274 + 0.179714I
b = 1.279350 0.437720I
4.73497 + 3.25615I 8.32867 2.40088I
u = 1.279350 + 0.437720I
a = 0.556509 0.222909I
b = 1.256250 + 0.462320I
4.73497 3.25615I 8.32867 + 2.40088I
u = 1.279350 0.437720I
a = 0.556509 + 0.222909I
b = 1.256250 0.462320I
4.73497 + 3.25615I 8.32867 2.40088I
u = 1.275180 + 0.450373I
a = 0.690774 + 1.153910I
b = 0.006457 0.907657I
8.68612 + 1.54935I 4.90398 0.66420I
u = 1.275180 0.450373I
a = 0.690774 1.153910I
b = 0.006457 + 0.907657I
8.68612 1.54935I 4.90398 + 0.66420I
u = 1.299550 + 0.440363I
a = 0.651100 + 1.156960I
b = 0.039142 0.923066I
8.49724 8.19235I 5.30498 + 5.35870I
u = 1.299550 0.440363I
a = 0.651100 1.156960I
b = 0.039142 + 0.923066I
8.49724 + 8.19235I 5.30498 5.35870I
u = 0.050886 + 0.582477I
a = 0.99593 + 1.97518I
b = 1.144780 0.271378I
0.109911 1.108490I 4.48602 + 0.68443I
u = 0.050886 0.582477I
a = 0.99593 1.97518I
b = 1.144780 + 0.271378I
0.109911 + 1.108490I 4.48602 0.68443I
u = 0.231455
a = 3.22507
b = 1.09543
2.03422 3.51620
12
III. I
u
3
= hb + 1, a, u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
1
a
6
=
1
1
a
11
=
1
0
a
7
=
0
1
a
1
=
0
1
a
12
=
1
0
a
4
=
1
1
a
3
=
0
1
a
9
=
0
1
a
8
=
0
1
a
2
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
, c
9
, c
11
u
c
3
, c
4
, c
10
u + 1
c
5
, c
6
, c
12
u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
, c
9
, c
11
y
c
3
, c
4
, c
5
c
6
, c
10
, c
12
y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
c
11
u(u
15
+ 3u
14
+ ··· + 8u
2
1)
2
(u
17
+ 3u
16
+ ··· 20u 4)
c
2
, c
8
u(u
15
+ u
14
+ ··· + 2u + 1)
2
(u
17
3u
16
+ ··· + 4u 2)
c
3
, c
4
, c
10
(u + 1)(u
17
u
16
+ ··· + 4u + 1)(u
30
u
29
+ ··· + 2u 1)
c
5
, c
6
, c
12
(u 1)(u
17
u
16
+ ··· + 4u + 1)(u
30
u
29
+ ··· + 2u 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
11
y(y
15
+ 19y
14
+ ··· + 16y 1)
2
(y
17
+ 19y
16
+ ··· + 8y 16)
c
2
, c
8
y(y
15
+ 3y
14
+ ··· + 8y
2
1)
2
(y
17
+ 3y
16
+ ··· 20y 4)
c
3
, c
4
, c
5
c
6
, c
10
, c
12
(y 1)(y
17
15y
16
+ ··· 2y 1)(y
30
21y
29
+ ··· 16y + 1)
18