12a
0801
(K12a
0801
)
A knot diagram
1
Linearized knot diagam
3 8 12 1 11 9 10 2 7 5 6 4
Solving Sequence
2,8
3
5,9,10
11 1 4 7 6 12
c
2
c
8
c
10
c
1
c
4
c
7
c
6
c
12
c
3
, c
5
, c
9
, c
11
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h−23u
10
+ 17u
9
+ u
8
+ 31u
7
65u
6
55u
5
+ 74u
4
34u
3
+ 84u
2
+ 356d 316u + 56,
25u
10
+ 3u
9
26u
8
5u
7
90u
6
83u
5
55u
4
6u
3
48u
2
+ 356c 328u 32,
21u
10
+ 31u
9
61u
8
+ 67u
7
+ 49u
6
27u
5
+ 114u
4
240u
3
+ 216u
2
+ 356b 304u + 144,
4u
10
+ 28u
9
35u
8
+ 72u
7
39u
6
+ 56u
5
9u
4
234u
3
+ 86u
2
+ 356a + 24u + 176,
u
11
u
10
+ 2u
9
u
8
+ 2u
7
+ 3u
6
3u
5
+ 4u
4
+ 12u
2
4u + 4i
I
u
2
= h−u
16
2u
14
3u
12
2u
10
u
8
+ 2u
7
3u
6
+ 2u
5
2u
3
+ 2u
2
+ 4d 4u,
u
16
3u
14
6u
12
7u
10
6u
8
+ 2u
7
6u
6
+ 4u
5
4u
4
+ 4u
3
u
2
+ 4c 2u + 2,
u
16
+ 2u
14
+ 5u
12
+ 6u
10
+ 7u
8
2u
7
+ 7u
6
2u
5
+ 2u
4
6u
3
+ 4u
2
+ 4b 4u,
4u
16
+ 6u
15
+ ··· + 4a + 6, u
17
2u
16
+ ··· 2u + 2i
I
u
3
= h−u
16
2u
14
3u
12
2u
10
u
8
+ 2u
7
3u
6
+ 2u
5
2u
3
+ 2u
2
+ 4d 4u,
u
16
3u
14
6u
12
7u
10
6u
8
+ 2u
7
6u
6
+ 4u
5
4u
4
+ 4u
3
u
2
+ 4c 2u + 2,
u
16
4u
15
+ ··· + 4b 4, 2u
16
4u
15
+ ··· + 4a 2, u
17
2u
16
+ ··· 2u + 2i
I
u
4
= h2u
16
4u
15
+ ··· + 4d 8, u
11
+ 2u
9
+ 3u
7
u
6
+ 2u
5
u
4
+ u
3
3u
2
+ 2c + 4u 2,
u
16
4u
15
+ ··· + 4b 4, 2u
16
4u
15
+ ··· + 4a 2, u
17
2u
16
+ ··· 2u + 2i
I
u
5
= h−a
2
c cau ca + d c + a + u + 1, a
2
cu + a
2
c + cau + c
2
au a u, a
2
u + a
2
+ au + b a,
a
3
+ 2a
2
u + 2a
2
+ au u, u
2
+ u + 1i
I
v
1
= ha, d, c + 1, b 1, v + 1i
I
v
2
= hc, d + 1, b, a 1, v + 1i
I
v
3
= ha, d + 1, c + a, b 1, v + 1i
I
v
4
= ha, da + c + 1, dv 1, cv + a + v, b + 1i
* 8 irreducible components of dim
C
= 0, with total 77 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I.
I
u
1
= h−23u
10
+17u
9
+· · ·+356d+56, 25u
10
+3u
9
+· · ·+356c32, 21u
10
+
31u
9
+· · ·+356b +144, 4u
10
+28u
9
+· · ·+356a +176, u
11
u
10
+· · ·4u +4i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
0.0112360u
10
0.0786517u
9
+ ··· 0.0674157u 0.494382
0.0589888u
10
0.0870787u
9
+ ··· + 0.853933u 0.404494
a
9
=
u
u
a
10
=
0.0702247u
10
0.00842697u
9
+ ··· + 0.921348u + 0.0898876
0.0646067u
10
0.0477528u
9
+ ··· + 0.887640u 0.157303
a
11
=
0.140449u
10
0.0168539u
9
+ ··· + 0.842697u + 0.179775
0.134831u
10
0.0561798u
9
+ ··· + 0.808989u 0.0674157
a
1
=
u
2
+ 1
u
4
a
4
=
0.00561798u
10
+ 0.0393258u
9
+ ··· + 0.0337079u 0.752809
0.0646067u
10
+ 0.0477528u
9
+ ··· + 0.112360u + 0.157303
a
7
=
0.00561798u
10
0.0393258u
9
+ ··· 0.0337079u 0.247191
0.0646067u
10
0.0477528u
9
+ ··· + 0.887640u 0.157303
a
6
=
0.0112360u
10
0.0786517u
9
+ ··· 0.0674157u 0.494382
0.0589888u
10
0.0870787u
9
+ ··· + 0.853933u 0.404494
a
12
=
0.101124u
10
0.0421348u
9
+ ··· + 0.606742u + 0.449438
0.0898876u
10
0.120787u
9
+ ··· + 0.539326u 0.0449438
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
113
89
u
10
+
99
89
u
9
146
89
u
8
+
13
89
u
7
122
89
u
6
247
89
u
5
+
321
89
u
4
20
89
u
3
338
89
u
2
1212
89
u
522
89
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ 3u
10
+ ··· 80u 16
c
2
, c
8
u
11
u
10
+ 2u
9
u
8
+ 2u
7
+ 3u
6
3u
5
+ 4u
4
+ 12u
2
4u + 4
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
11
u
10
6u
9
+ 5u
8
+ 13u
7
7u
6
10u
5
2u
4
2u
3
+ 8u
2
+ 4u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 3y
10
+ ··· + 768y 256
c
2
, c
8
y
11
+ 3y
10
+ ··· 80y 16
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
11
13y
10
+ ··· 76y
2
1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697658 + 0.849048I
a = 0.921136 + 0.783422I
b = 0.740581 + 0.864357I
c = 0.485430 + 0.499909I
d = 0.063398 + 0.826398I
3.70211 2.67058I 3.05924 + 3.87935I
u = 0.697658 0.849048I
a = 0.921136 0.783422I
b = 0.740581 0.864357I
c = 0.485430 0.499909I
d = 0.063398 0.826398I
3.70211 + 2.67058I 3.05924 3.87935I
u = 1.27716
a = 1.30381
b = 1.87182
c = 1.14011
d = 0.519995
13.3802 18.2600
u = 1.147220 + 0.649373I
a = 0.08285 + 1.84843I
b = 1.76297 0.05107I
c = 1.037550 + 0.312280I
d = 0.506365 + 0.204596I
9.05799 8.57514I 15.6343 + 5.1528I
u = 1.147220 0.649373I
a = 0.08285 1.84843I
b = 1.76297 + 0.05107I
c = 1.037550 0.312280I
d = 0.506365 0.204596I
9.05799 + 8.57514I 15.6343 5.1528I
u = 0.188962 + 0.548520I
a = 0.556629 0.158029I
b = 0.197361 + 0.297672I
c = 0.248124 + 0.521791I
d = 0.066277 + 0.455147I
0.301659 + 0.791298I 7.48686 8.65650I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.188962 0.548520I
a = 0.556629 + 0.158029I
b = 0.197361 0.297672I
c = 0.248124 0.521791I
d = 0.066277 0.455147I
0.301659 0.791298I 7.48686 + 8.65650I
u = 0.80937 + 1.18781I
a = 1.69324 0.30290I
b = 3.40094 + 1.12656I
c = 0.326968 0.969070I
d = 0.40614 2.47046I
10.8529 + 15.6015I 15.8571 8.6135I
u = 0.80937 1.18781I
a = 1.69324 + 0.30290I
b = 3.40094 1.12656I
c = 0.326968 + 0.969070I
d = 0.40614 + 2.47046I
10.8529 15.6015I 15.8571 + 8.6135I
u = 0.30932 + 1.43197I
a = 0.759680 + 0.558726I
b = 1.53066 + 2.95790I
c = 0.122169 1.042440I
d = 0.15539 2.65594I
18.7453 5.8080I 19.8325 + 3.5503I
u = 0.30932 1.43197I
a = 0.759680 0.558726I
b = 1.53066 2.95790I
c = 0.122169 + 1.042440I
d = 0.15539 + 2.65594I
18.7453 + 5.8080I 19.8325 3.5503I
7
II. I
u
2
= h−u
16
2u
14
+ · · · + 4d 4u, u
16
3u
14
+ · · · + 4c + 2, u
16
+
2u
14
+ · · · + 4b 4u, 4u
16
+ 6u
15
+ · · · + 4a + 6, u
17
2u
16
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
u
16
3
2
u
15
+ ··· + 2u
3
2
1
4
u
16
1
2
u
14
+ ··· u
2
+ u
a
9
=
u
u
a
10
=
1
4
u
16
+
3
4
u
14
+ ··· +
1
2
u
1
2
1
4
u
16
+
1
2
u
14
+ ···
1
2
u
2
+ u
a
11
=
u
16
+
3
2
u
15
+ ···
3
2
u + 1
1
2
u
14
+ u
12
+ ··· u
3
1
a
1
=
u
2
+ 1
u
4
a
4
=
u
16
3
2
u
15
+ ··· + 3u
3
2
1
4
u
16
+
1
2
u
14
+ ··· u
2
+ u
a
7
=
1
4
u
14
3
4
u
12
+ ··· +
1
2
u +
1
2
1
4
u
16
+
1
2
u
14
+ ···
1
2
u
2
+ u
a
6
=
1
2
u
16
u
15
+ ··· + u
1
2
3
4
u
16
u
15
+ ··· +
3
2
u 1
a
12
=
u
16
+
3
2
u
15
+ ··· 2u +
1
2
1
4
u
14
+
1
2
u
12
+ ··· +
3
4
u
4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
+ 4u
15
6u
14
+ 8u
13
8u
12
+ 14u
11
10u
10
+ 12u
9
4u
8
+ 10u
7
20u
6
+ 26u
5
16u
4
4u
3
+ 10u
2
8u 8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 6u
16
+ ··· + 8u 4
c
2
, c
8
u
17
2u
16
+ ··· 2u + 2
c
3
, c
4
, c
12
u
17
5u
15
+ ··· 3u
2
+ 4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u
17
2u
16
+ ··· + 3u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 6y
16
+ ··· + 376y 16
c
2
, c
8
y
17
+ 6y
16
+ ··· + 8y 4
c
3
, c
4
, c
12
y
17
10y
16
+ ··· + 24y 16
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y
17
16y
16
+ ··· + 19y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.742615 + 0.650908I
a = 0.718435 + 0.821804I
b = 0.566230 + 1.035510I
c = 0.489237 + 0.474516I
d = 0.197556 + 0.828548I
0.369365 1.227240I 5.85153 + 0.85505I
u = 0.742615 0.650908I
a = 0.718435 0.821804I
b = 0.566230 1.035510I
c = 0.489237 0.474516I
d = 0.197556 0.828548I
0.369365 + 1.227240I 5.85153 0.85505I
u = 0.834865 + 0.265014I
a = 2.92918 + 3.22304I
b = 1.94336 0.16531I
c = 1.39610 + 0.29715I
d = 0.377294 + 0.097590I
5.90943 0.43387I 14.5683 0.8754I
u = 0.834865 0.265014I
a = 2.92918 3.22304I
b = 1.94336 + 0.16531I
c = 1.39610 0.29715I
d = 0.377294 0.097590I
5.90943 + 0.43387I 14.5683 + 0.8754I
u = 0.976738 + 0.562668I
a = 0.35073 + 2.53095I
b = 1.77103 0.11938I
c = 1.124900 + 0.370279I
d = 0.445879 + 0.191459I
3.90030 + 4.64771I 11.56085 4.11695I
u = 0.976738 0.562668I
a = 0.35073 2.53095I
b = 1.77103 + 0.11938I
c = 1.124900 0.370279I
d = 0.445879 0.191459I
3.90030 4.64771I 11.56085 + 4.11695I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.003992 + 0.842342I
a = 2.04176 + 0.02534I
b = 0.770137 0.000913I
c = 0.499289 + 0.745483I
d = 0.126546 + 0.484371I
4.59969 1.46955I 15.6358 + 4.6653I
u = 0.003992 0.842342I
a = 2.04176 0.02534I
b = 0.770137 + 0.000913I
c = 0.499289 0.745483I
d = 0.126546 0.484371I
4.59969 + 1.46955I 15.6358 4.6653I
u = 0.656745 + 1.004700I
a = 1.055980 + 0.795426I
b = 0.860931 + 0.769831I
c = 0.494032 + 0.511989I
d = 0.026089 + 0.826073I
0.71009 + 6.57063I 8.73995 6.43452I
u = 0.656745 1.004700I
a = 1.055980 0.795426I
b = 0.860931 0.769831I
c = 0.494032 0.511989I
d = 0.026089 0.826073I
0.71009 6.57063I 8.73995 + 6.43452I
u = 0.110097 + 1.246510I
a = 0.44777 + 1.36378I
b = 0.91154 + 4.59961I
c = 0.059575 1.151130I
d = 0.08505 2.81355I
11.32450 + 2.71165I 17.8424 3.1371I
u = 0.110097 1.246510I
a = 0.44777 1.36378I
b = 0.91154 4.59961I
c = 0.059575 + 1.151130I
d = 0.08505 + 2.81355I
11.32450 2.71165I 17.8424 + 3.1371I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.578864 + 1.116300I
a = 1.94591 + 0.31220I
b = 3.95970 + 2.40372I
c = 0.306410 1.074930I
d = 0.42725 2.64129I
8.33968 + 5.51158I 16.2513 3.8449I
u = 0.578864 1.116300I
a = 1.94591 0.31220I
b = 3.95970 2.40372I
c = 0.306410 + 1.074930I
d = 0.42725 + 2.64129I
8.33968 5.51158I 16.2513 + 3.8449I
u = 0.718492 + 1.129370I
a = 1.87724 0.11825I
b = 3.79947 + 1.50560I
c = 0.334233 1.013370I
d = 0.44170 2.53369I
5.69311 10.83370I 12.8938 + 7.4126I
u = 0.718492 1.129370I
a = 1.87724 + 0.11825I
b = 3.79947 1.50560I
c = 0.334233 + 1.013370I
d = 0.44170 + 2.53369I
5.69311 + 10.83370I 12.8938 7.4126I
u = 0.463897
a = 0.344922
b = 0.887074
c = 0.489071
d = 0.600031
2.03175 3.31210
13
III. I
u
3
= h−u
16
2u
14
+ · · · + 4d 4u, u
16
3u
14
+ · · · + 4c + 2, u
16
4u
15
+ · · · + 4b 4, 2u
16
4u
15
+ · · · + 4a 2, u
17
2u
16
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
1
2
u
16
+ u
15
+ ···
11
4
u
2
+
1
2
1
4
u
16
+ u
15
+ ···
3
2
u + 1
a
9
=
u
u
a
10
=
1
4
u
16
+
3
4
u
14
+ ··· +
1
2
u
1
2
1
4
u
16
+
1
2
u
14
+ ···
1
2
u
2
+ u
a
11
=
1
2
u
16
+
3
2
u
14
+ ··· +
5
2
u
2
1
2
u
u
15
u
14
+ ··· 2u
2
+ 1
a
1
=
u
2
+ 1
u
4
a
4
=
1
4
u
13
+
1
2
u
11
+ ··· u
2
1
1
4
u
13
+
1
2
u
11
+ ··· +
1
2
u
2
1
2
u
a
7
=
1
4
u
14
3
4
u
12
+ ··· +
1
2
u +
1
2
1
4
u
16
+
1
2
u
14
+ ···
1
2
u
2
+ u
a
6
=
1
2
u
16
u
15
+ ··· + u
1
2
3
4
u
16
u
15
+ ··· +
3
2
u 1
a
12
=
1
2
u
16
1
4
u
15
+ ···
1
2
u +
1
2
3
4
u
15
3
4
u
14
+ ···
1
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
+ 4u
15
6u
14
+ 8u
13
8u
12
+ 14u
11
10u
10
+ 12u
9
4u
8
+ 10u
7
20u
6
+ 26u
5
16u
4
4u
3
+ 10u
2
8u 8
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 6u
16
+ ··· + 8u 4
c
2
, c
8
u
17
2u
16
+ ··· 2u + 2
c
3
, c
4
, c
6
c
7
, c
9
, c
12
u
17
2u
16
+ ··· + 3u 1
c
5
, c
10
, c
11
u
17
5u
15
+ ··· 3u
2
+ 4
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 6y
16
+ ··· + 376y 16
c
2
, c
8
y
17
+ 6y
16
+ ··· + 8y 4
c
3
, c
4
, c
6
c
7
, c
9
, c
12
y
17
16y
16
+ ··· + 19y 1
c
5
, c
10
, c
11
y
17
10y
16
+ ··· + 24y 16
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.742615 + 0.650908I
a = 0.33067 1.38135I
b = 0.289061 0.354565I
c = 0.489237 + 0.474516I
d = 0.197556 + 0.828548I
0.369365 1.227240I 5.85153 + 0.85505I
u = 0.742615 0.650908I
a = 0.33067 + 1.38135I
b = 0.289061 + 0.354565I
c = 0.489237 0.474516I
d = 0.197556 0.828548I
0.369365 + 1.227240I 5.85153 0.85505I
u = 0.834865 + 0.265014I
a = 0.007441 + 0.469677I
b = 0.594985 + 0.032560I
c = 1.39610 + 0.29715I
d = 0.377294 + 0.097590I
5.90943 0.43387I 14.5683 0.8754I
u = 0.834865 0.265014I
a = 0.007441 0.469677I
b = 0.594985 0.032560I
c = 1.39610 0.29715I
d = 0.377294 0.097590I
5.90943 + 0.43387I 14.5683 + 0.8754I
u = 0.976738 + 0.562668I
a = 0.220338 1.221990I
b = 0.383732 0.363700I
c = 1.124900 + 0.370279I
d = 0.445879 + 0.191459I
3.90030 + 4.64771I 11.56085 4.11695I
u = 0.976738 0.562668I
a = 0.220338 + 1.221990I
b = 0.383732 + 0.363700I
c = 1.124900 0.370279I
d = 0.445879 0.191459I
3.90030 4.64771I 11.56085 + 4.11695I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.003992 + 0.842342I
a = 0.617996 0.253084I
b = 1.11240 0.99360I
c = 0.499289 + 0.745483I
d = 0.126546 + 0.484371I
4.59969 1.46955I 15.6358 + 4.6653I
u = 0.003992 0.842342I
a = 0.617996 + 0.253084I
b = 1.11240 + 0.99360I
c = 0.499289 0.745483I
d = 0.126546 0.484371I
4.59969 + 1.46955I 15.6358 4.6653I
u = 0.656745 + 1.004700I
a = 1.271870 0.179063I
b = 2.14507 0.73367I
c = 0.494032 + 0.511989I
d = 0.026089 + 0.826073I
0.71009 + 6.57063I 8.73995 6.43452I
u = 0.656745 1.004700I
a = 1.271870 + 0.179063I
b = 2.14507 + 0.73367I
c = 0.494032 0.511989I
d = 0.026089 0.826073I
0.71009 6.57063I 8.73995 + 6.43452I
u = 0.110097 + 1.246510I
a = 0.925043 0.007268I
b = 1.55691 0.59036I
c = 0.059575 1.151130I
d = 0.08505 2.81355I
11.32450 + 2.71165I 17.8424 3.1371I
u = 0.110097 1.246510I
a = 0.925043 + 0.007268I
b = 1.55691 + 0.59036I
c = 0.059575 + 1.151130I
d = 0.08505 + 2.81355I
11.32450 2.71165I 17.8424 + 3.1371I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.578864 + 1.116300I
a = 0.594829 + 0.285325I
b = 1.098970 0.234758I
c = 0.306410 1.074930I
d = 0.42725 2.64129I
8.33968 + 5.51158I 16.2513 3.8449I
u = 0.578864 1.116300I
a = 0.594829 0.285325I
b = 1.098970 + 0.234758I
c = 0.306410 + 1.074930I
d = 0.42725 + 2.64129I
8.33968 5.51158I 16.2513 + 3.8449I
u = 0.718492 + 1.129370I
a = 1.276660 0.102756I
b = 2.11452 0.60757I
c = 0.334233 1.013370I
d = 0.44170 2.53369I
5.69311 10.83370I 12.8938 + 7.4126I
u = 0.718492 1.129370I
a = 1.276660 + 0.102756I
b = 2.11452 + 0.60757I
c = 0.334233 + 1.013370I
d = 0.44170 + 2.53369I
5.69311 + 10.83370I 12.8938 7.4126I
u = 0.463897
a = 1.62063
b = 0.248463
c = 0.489071
d = 0.600031
2.03175 3.31210
19
IV. I
u
4
= h2u
16
4u
15
+ · · · + 4d 8, u
11
+ 2u
9
+ · · · + 2c 2, u
16
4u
15
+
· · · + 4b 4, 2u
16
4u
15
+ · · · + 4a 2, u
17
2u
16
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
1
2
u
16
+ u
15
+ ···
11
4
u
2
+
1
2
1
4
u
16
+ u
15
+ ···
3
2
u + 1
a
9
=
u
u
a
10
=
1
2
u
11
u
9
+ ··· 2u + 1
1
2
u
16
+ u
15
+ ···
3
2
u + 2
a
11
=
1
2
u
11
u
9
+ ···
3
2
u + 1
1
2
u
16
+ u
15
+ ··· u + 2
a
1
=
u
2
+ 1
u
4
a
4
=
1
4
u
13
+
1
2
u
11
+ ··· u
2
1
1
4
u
13
+
1
2
u
11
+ ··· +
1
2
u
2
1
2
u
a
7
=
1
2
u
16
+ u
15
+ ··· +
1
2
u + 1
1
2
u
16
+ u
15
+ ···
3
2
u + 2
a
6
=
1
2
u
16
+ u
15
+ ··· +
1
2
u + 1
1
2
u
16
+ u
15
+ ···
3
2
u + 2
a
12
=
1
2
u
16
1
4
u
15
+ ···
1
2
u +
1
2
3
4
u
15
3
4
u
14
+ ···
1
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
+ 4u
15
6u
14
+ 8u
13
8u
12
+ 14u
11
10u
10
+ 12u
9
4u
8
+ 10u
7
20u
6
+ 26u
5
16u
4
4u
3
+ 10u
2
8u 8
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 6u
16
+ ··· + 8u 4
c
2
, c
8
u
17
2u
16
+ ··· 2u + 2
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
17
2u
16
+ ··· + 3u 1
c
6
, c
7
, c
9
u
17
5u
15
+ ··· 3u
2
+ 4
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 6y
16
+ ··· + 376y 16
c
2
, c
8
y
17
+ 6y
16
+ ··· + 8y 4
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
17
16y
16
+ ··· + 19y 1
c
6
, c
7
, c
9
y
17
10y
16
+ ··· + 24y 16
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.742615 + 0.650908I
a = 0.33067 1.38135I
b = 0.289061 0.354565I
c = 1.108970 + 0.552270I
d = 0.375106 + 0.244608I
0.369365 1.227240I 5.85153 + 0.85505I
u = 0.742615 0.650908I
a = 0.33067 + 1.38135I
b = 0.289061 + 0.354565I
c = 1.108970 0.552270I
d = 0.375106 0.244608I
0.369365 + 1.227240I 5.85153 0.85505I
u = 0.834865 + 0.265014I
a = 0.007441 + 0.469677I
b = 0.594985 + 0.032560I
c = 0.808553 0.734272I
d = 1.21891 1.69522I
5.90943 0.43387I 14.5683 0.8754I
u = 0.834865 0.265014I
a = 0.007441 0.469677I
b = 0.594985 0.032560I
c = 0.808553 + 0.734272I
d = 1.21891 + 1.69522I
5.90943 + 0.43387I 14.5683 + 0.8754I
u = 0.976738 + 0.562668I
a = 0.220338 1.221990I
b = 0.383732 0.363700I
c = 0.520830 + 0.488010I
d = 0.267142 + 1.003160I
3.90030 + 4.64771I 11.56085 4.11695I
u = 0.976738 0.562668I
a = 0.220338 + 1.221990I
b = 0.383732 + 0.363700I
c = 0.520830 0.488010I
d = 0.267142 1.003160I
3.90030 4.64771I 11.56085 + 4.11695I
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.003992 + 0.842342I
a = 0.617996 0.253084I
b = 1.11240 0.99360I
c = 0.00488 1.48599I
d = 0.00830 3.34608I
4.59969 1.46955I 15.6358 + 4.6653I
u = 0.003992 0.842342I
a = 0.617996 + 0.253084I
b = 1.11240 + 0.99360I
c = 0.00488 + 1.48599I
d = 0.00830 + 3.34608I
4.59969 + 1.46955I 15.6358 4.6653I
u = 0.656745 + 1.004700I
a = 1.271870 0.179063I
b = 2.14507 0.73367I
c = 0.379170 1.066590I
d = 0.53910 2.59632I
0.71009 + 6.57063I 8.73995 6.43452I
u = 0.656745 1.004700I
a = 1.271870 + 0.179063I
b = 2.14507 + 0.73367I
c = 0.379170 + 1.066590I
d = 0.53910 + 2.59632I
0.71009 6.57063I 8.73995 + 6.43452I
u = 0.110097 + 1.246510I
a = 0.925043 0.007268I
b = 1.55691 0.59036I
c = 0.572289 + 0.568034I
d = 0.237606 + 0.645663I
11.32450 + 2.71165I 17.8424 3.1371I
u = 0.110097 1.246510I
a = 0.925043 + 0.007268I
b = 1.55691 + 0.59036I
c = 0.572289 0.568034I
d = 0.237606 0.645663I
11.32450 2.71165I 17.8424 + 3.1371I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.578864 + 1.116300I
a = 0.594829 + 0.285325I
b = 1.098970 0.234758I
c = 0.810552 + 0.554845I
d = 0.395621 + 0.423926I
8.33968 + 5.51158I 16.2513 3.8449I
u = 0.578864 1.116300I
a = 0.594829 0.285325I
b = 1.098970 + 0.234758I
c = 0.810552 0.554845I
d = 0.395621 0.423926I
8.33968 5.51158I 16.2513 + 3.8449I
u = 0.718492 + 1.129370I
a = 1.276660 0.102756I
b = 2.11452 0.60757I
c = 0.503630 + 0.508561I
d = 0.078480 + 0.870974I
5.69311 10.83370I 12.8938 + 7.4126I
u = 0.718492 1.129370I
a = 1.276660 + 0.102756I
b = 2.11452 + 0.60757I
c = 0.503630 0.508561I
d = 0.078480 0.870974I
5.69311 + 10.83370I 12.8938 7.4126I
u = 0.463897
a = 1.62063
b = 0.248463
c = 2.35817
d = 0.221542
2.03175 3.31210
25
V. I
u
5
= h−cau + u + · · · + a + 1, a
2
cu + cau + · · · + a
2
c a, a
2
u + a
2
+
au + b a, a
3
+ 2a
2
u + 2a
2
+ au u, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u + 1
a
5
=
a
a
2
u a
2
au + a
a
9
=
u
u
a
10
=
c
a
2
c + cau + ca + c a u 1
a
11
=
cau a
2
u a
2
au + c + u
cau a
2
u a
2
au + c 1
a
1
=
u
u
a
4
=
a
2
u
a
2
au
a
7
=
a
2
c + cau + ca a u 1
a
2
c + cau + ca + c a u 1
a
6
=
a
2
c + cau + ca cu c a u 1
a
2
c + cau + ca cu a u 1
a
12
=
a
2
u a
2
2au a
a
2
u a
2
2au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 10
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
(u
2
+ u + 1)
6
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
(u
6
2u
4
u
3
+ u
2
+ u + 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
(y
2
+ y + 1)
6
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
(y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.209470 0.322370I
b = 2.09752 1.00286I
c = 0.420593 1.203220I
d = 0.66171 2.80985I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.209470 0.322370I
b = 2.09752 1.00286I
c = 0.467454 + 0.522723I
d = 0.016866 + 0.719678I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.450588 + 0.196955I
b = 0.918042 0.325768I
c = 0.888047 + 0.680493I
d = 0.321427 + 0.358124I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.450588 + 0.196955I
b = 0.918042 0.325768I
c = 0.420593 1.203220I
d = 0.66171 2.80985I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.24111 1.60664I
b = 0.179479 0.403420I
c = 0.888047 + 0.680493I
d = 0.321427 + 0.358124I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.24111 1.60664I
b = 0.179479 0.403420I
c = 0.467454 + 0.522723I
d = 0.016866 + 0.719678I
3.28987 2.02988I 12.00000 + 3.46410I
29
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 1.209470 + 0.322370I
b = 2.09752 + 1.00286I
c = 0.420593 + 1.203220I
d = 0.66171 + 2.80985I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 1.209470 + 0.322370I
b = 2.09752 + 1.00286I
c = 0.467454 0.522723I
d = 0.016866 0.719678I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 0.450588 0.196955I
b = 0.918042 + 0.325768I
c = 0.888047 0.680493I
d = 0.321427 0.358124I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 0.450588 0.196955I
b = 0.918042 + 0.325768I
c = 0.420593 + 1.203220I
d = 0.66171 + 2.80985I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 0.24111 + 1.60664I
b = 0.179479 + 0.403420I
c = 0.888047 0.680493I
d = 0.321427 0.358124I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 0.24111 + 1.60664I
b = 0.179479 + 0.403420I
c = 0.467454 0.522723I
d = 0.016866 0.719678I
3.28987 + 2.02988I 12.00000 3.46410I
30
VI. I
v
1
= ha, d, c + 1, b 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
0
1
a
9
=
1
0
a
10
=
1
0
a
11
=
1
1
a
1
=
1
0
a
4
=
1
1
a
7
=
1
0
a
6
=
1
0
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
9
u
c
3
, c
4
, c
10
c
11
u + 1
c
5
, c
12
u 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
9
y
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y 1
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 0
3.28987 12.0000
34
VII. I
v
2
= hc, d + 1, b, a 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
1
0
a
9
=
1
0
a
10
=
0
1
a
11
=
1
1
a
1
=
1
0
a
4
=
1
0
a
7
=
1
1
a
6
=
0
1
a
12
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
12
u
c
5
, c
9
u + 1
c
6
, c
7
, c
10
c
11
u 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
12
y
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
3.28987 12.0000
38
VIII. I
v
3
= ha, d + 1, c + a, b 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
0
1
a
9
=
1
0
a
10
=
0
1
a
11
=
0
1
a
1
=
1
0
a
4
=
1
1
a
7
=
1
1
a
6
=
0
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
10
, c
11
u
c
3
, c
4
, c
9
u + 1
c
6
, c
7
, c
12
u 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
10
, c
11
y
c
3
, c
4
, c
6
c
7
, c
9
, c
12
y 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 0
d = 1.00000
3.28987 12.0000
42
IX. I
v
4
= ha, da + c + 1, dv 1, cv + a + v, b + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
v
0
a
3
=
1
0
a
5
=
0
1
a
9
=
v
0
a
10
=
1
d
a
11
=
1
d 1
a
1
=
1
0
a
4
=
1
1
a
7
=
v + 1
d
a
6
=
1
d
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = d
2
v
2
16
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
43
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
4.93480 16.4360 + 0.4903I
44
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
3
(u
2
+ u + 1)
6
(u
11
+ 3u
10
+ ··· 80u 16)
· (u
17
+ 6u
16
+ ··· + 8u 4)
3
c
2
, c
8
u
3
(u
2
+ u + 1)
6
· (u
11
u
10
+ 2u
9
u
8
+ 2u
7
+ 3u
6
3u
5
+ 4u
4
+ 12u
2
4u + 4)
· (u
17
2u
16
+ ··· 2u + 2)
3
c
3
, c
4
, c
9
u(u + 1)
2
(u
6
2u
4
u
3
+ u
2
+ u + 1)
2
· (u
11
u
10
6u
9
+ 5u
8
+ 13u
7
7u
6
10u
5
2u
4
2u
3
+ 8u
2
+ 4u + 1)
· (u
17
5u
15
+ ··· 3u
2
+ 4)(u
17
2u
16
+ ··· + 3u 1)
2
c
5
, c
10
, c
11
u(u 1)(u + 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
2
· (u
11
u
10
6u
9
+ 5u
8
+ 13u
7
7u
6
10u
5
2u
4
2u
3
+ 8u
2
+ 4u + 1)
· (u
17
5u
15
+ ··· 3u
2
+ 4)(u
17
2u
16
+ ··· + 3u 1)
2
c
6
, c
7
, c
12
u(u 1)
2
(u
6
2u
4
u
3
+ u
2
+ u + 1)
2
· (u
11
u
10
6u
9
+ 5u
8
+ 13u
7
7u
6
10u
5
2u
4
2u
3
+ 8u
2
+ 4u + 1)
· (u
17
5u
15
+ ··· 3u
2
+ 4)(u
17
2u
16
+ ··· + 3u 1)
2
45
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
3
(y
2
+ y + 1)
6
(y
11
+ 3y
10
+ ··· + 768y 256)
· (y
17
+ 6y
16
+ ··· + 376y 16)
3
c
2
, c
8
y
3
(y
2
+ y + 1)
6
(y
11
+ 3y
10
+ ··· 80y 16)
· (y
17
+ 6y
16
+ ··· + 8y 4)
3
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y(y 1)
2
(y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
2
· (y
11
13y
10
+ ··· 76y
2
1)(y
17
16y
16
+ ··· + 19y 1)
2
· (y
17
10y
16
+ ··· + 24y 16)
46