12a
0808
(K12a
0808
)
A knot diagram
1
Linearized knot diagam
4 5 6 9 10 1 12 11 2 3 8 7
Solving Sequence
7,12
8
1,4
2 6 3 11 9 5 10
c
7
c
12
c
1
c
6
c
3
c
11
c
8
c
4
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−4708u
36
+ 22559u
35
+ ··· + 12181b + 159188,
184180u
36
854911u
35
+ ··· + 133991a 2353969, u
37
5u
36
+ ··· 93u + 11i
I
u
2
= h11u
22
a + 26u
22
+ ··· + 4a + 1, u
22
+ 4u
21
+ ··· + a 4, u
23
+ 3u
22
+ ··· 6u
2
+ 1i
I
u
3
= hu
10
+ 3u
9
+ 10u
8
+ 20u
7
+ 33u
6
+ 43u
5
+ 42u
4
+ 32u
3
+ 17u
2
+ b + 6u + 1,
u
13
2u
12
12u
11
19u
10
53u
9
65u
8
106u
7
95u
6
93u
5
52u
4
27u
3
3u
2
+ a + 3,
u
14
+ 2u
13
+ ··· + 3u + 1i
I
v
1
= ha, b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4708u
36
+ 22559u
35
+ · · · + 12181b + 159188, 1.84 × 10
5
u
36
8.55 × 10
5
u
35
+ · · · + 1.34 × 10
5
a 2.35 × 10
6
, u
37
5u
36
+ · · · 93u + 11i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
a
4
=
1.37457u
36
+ 6.38036u
35
+ ··· 159.292u + 17.5681
0.386504u
36
1.85198u
35
+ ··· + 99.2238u 13.0685
a
2
=
3.17294u
36
+ 14.8917u
35
+ ··· 300.428u + 33.3318
0.892455u
36
4.15631u
35
+ ··· + 240.876u 30.6508
a
6
=
u
2
+ 1
u
2
a
3
=
0.695562u
36
+ 3.44817u
35
+ ··· 15.1053u 3.85542
0.492488u
36
2.10557u
35
+ ··· + 110.267u 15.1203
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
0.800315u
36
+ 3.60432u
35
+ ··· 74.9791u + 8.59307
0.134143u
36
0.748543u
35
+ ··· + 43.9825u 4.57902
a
10
=
1.44794u
36
6.84097u
35
+ ··· + 204.364u 29.2190
0.0802890u
36
0.953534u
35
+ ··· + 17.4424u + 1.26911
(ii) Obstruction class = 1
(iii) Cusp Shapes =
56806
12181
u
36
266817
12181
u
35
+ ··· +
12593355
12181
u
1834736
12181
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
37
+ 4u
36
+ ··· + 24u 1
c
2
u
37
+ 22u
36
+ ··· 87u 11
c
4
, c
10
u
37
+ 2u
35
+ ··· 31u
2
3
c
5
, c
9
u
37
u
36
+ ··· + 3u 1
c
6
, c
7
, c
8
c
11
, c
12
u
37
+ 5u
36
+ ··· 93u 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
37
32y
36
+ ··· + 114y 1
c
2
y
37
+ 46y
35
+ ··· + 419y 121
c
4
, c
10
y
37
+ 4y
36
+ ··· 186y 9
c
5
, c
9
y
37
15y
36
+ ··· + 39y 1
c
6
, c
7
, c
8
c
11
, c
12
y
37
+ 51y
36
+ ··· + 245y 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.024756 + 1.003880I
a = 1.175790 0.520011I
b = 0.66374 1.62745I
5.00500 0.12327I 5.98815 + 0.I
u = 0.024756 1.003880I
a = 1.175790 + 0.520011I
b = 0.66374 + 1.62745I
5.00500 + 0.12327I 5.98815 + 0.I
u = 0.289437 + 0.983506I
a = 0.571567 0.060773I
b = 0.93730 1.28805I
5.74342 + 2.02777I 6.65386 1.42849I
u = 0.289437 0.983506I
a = 0.571567 + 0.060773I
b = 0.93730 + 1.28805I
5.74342 2.02777I 6.65386 + 1.42849I
u = 0.255241 + 1.040160I
a = 0.614543 0.711849I
b = 0.02855 2.23185I
6.18042 + 5.52248I 8.08952 8.67422I
u = 0.255241 1.040160I
a = 0.614543 + 0.711849I
b = 0.02855 + 2.23185I
6.18042 5.52248I 8.08952 + 8.67422I
u = 0.174584 + 0.835928I
a = 0.438786 + 0.614183I
b = 0.159818 + 0.734522I
1.41316 2.04594I 1.13419 + 3.99911I
u = 0.174584 0.835928I
a = 0.438786 0.614183I
b = 0.159818 0.734522I
1.41316 + 2.04594I 1.13419 3.99911I
u = 0.373017 + 1.086120I
a = 0.263327 + 0.662536I
b = 0.03559 + 2.06531I
5.4061 + 14.0876I 0
u = 0.373017 1.086120I
a = 0.263327 0.662536I
b = 0.03559 2.06531I
5.4061 14.0876I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.601924 + 0.470380I
a = 0.819217 0.043610I
b = 0.639760 + 0.296764I
1.57344 6.55157I 0.66439 + 4.08814I
u = 0.601924 0.470380I
a = 0.819217 + 0.043610I
b = 0.639760 0.296764I
1.57344 + 6.55157I 0.66439 4.08814I
u = 0.258979 + 1.229600I
a = 0.583862 + 0.387661I
b = 0.797830 + 1.118640I
7.04198 3.53330I 0
u = 0.258979 1.229600I
a = 0.583862 0.387661I
b = 0.797830 1.118640I
7.04198 + 3.53330I 0
u = 0.644949 + 0.303940I
a = 0.889386 0.999870I
b = 0.211320 + 0.616406I
1.07949 + 10.62970I 2.38501 8.97197I
u = 0.644949 0.303940I
a = 0.889386 + 0.999870I
b = 0.211320 0.616406I
1.07949 10.62970I 2.38501 + 8.97197I
u = 0.494000 + 0.492655I
a = 0.382762 + 0.046228I
b = 0.189464 + 0.141918I
0.72150 1.71038I 5.72840 0.24301I
u = 0.494000 0.492655I
a = 0.382762 0.046228I
b = 0.189464 0.141918I
0.72150 + 1.71038I 5.72840 + 0.24301I
u = 0.450704 + 0.280399I
a = 0.64300 + 1.61268I
b = 0.407710 0.737598I
2.07909 + 3.10269I 2.55857 8.69904I
u = 0.450704 0.280399I
a = 0.64300 1.61268I
b = 0.407710 + 0.737598I
2.07909 3.10269I 2.55857 + 8.69904I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13418 + 1.50316I
a = 0.336179 + 0.293626I
b = 0.297595 + 0.492362I
5.92171 3.96285I 0
u = 0.13418 1.50316I
a = 0.336179 0.293626I
b = 0.297595 0.492362I
5.92171 + 3.96285I 0
u = 0.397512 + 0.237116I
a = 1.54677 + 0.52584I
b = 0.690346 0.066411I
2.09954 0.39329I 2.47917 0.74863I
u = 0.397512 0.237116I
a = 1.54677 0.52584I
b = 0.690346 + 0.066411I
2.09954 + 0.39329I 2.47917 + 0.74863I
u = 0.409769
a = 0.906661
b = 0.331981
1.05211 10.2210
u = 0.03012 + 1.68814I
a = 0.548995 + 1.286040I
b = 1.05584 + 1.49435I
10.41680 2.72771I 0
u = 0.03012 1.68814I
a = 0.548995 1.286040I
b = 1.05584 1.49435I
10.41680 + 2.72771I 0
u = 0.08129 + 1.71808I
a = 1.09520 1.84279I
b = 1.02527 2.70249I
15.3380 + 3.5515I 0
u = 0.08129 1.71808I
a = 1.09520 + 1.84279I
b = 1.02527 + 2.70249I
15.3380 3.5515I 0
u = 0.00798 + 1.73092I
a = 0.42758 2.20249I
b = 0.00155 2.93076I
14.8725 0.2681I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.00798 1.73092I
a = 0.42758 + 2.20249I
b = 0.00155 + 2.93076I
14.8725 + 0.2681I 0
u = 0.06596 + 1.73206I
a = 0.16269 2.93754I
b = 0.46415 3.90524I
16.0814 + 6.8392I 0
u = 0.06596 1.73206I
a = 0.16269 + 2.93754I
b = 0.46415 + 3.90524I
16.0814 6.8392I 0
u = 0.10020 + 1.74554I
a = 0.25064 + 2.67618I
b = 0.24045 + 3.60770I
15.4757 + 16.0719I 0
u = 0.10020 1.74554I
a = 0.25064 2.67618I
b = 0.24045 3.60770I
15.4757 16.0719I 0
u = 0.05130 + 1.77583I
a = 0.63357 + 1.60178I
b = 0.47695 + 2.21578I
17.9370 2.2818I 0
u = 0.05130 1.77583I
a = 0.63357 1.60178I
b = 0.47695 2.21578I
17.9370 + 2.2818I 0
8
II. I
u
2
=
h11u
22
a+26u
22
+· · ·+4a+1, u
22
+4u
21
+· · ·+a4, u
23
+3u
22
+· · ·6u
2
+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
a
4
=
a
0.118280au
22
0.279570u
22
+ ··· 0.0430108a 0.0107527
a
2
=
0.268817au
22
+ 0.182796u
22
+ ··· + 0.720430a 0.569892
0.0107527au
22
0.247312u
22
+ ··· + 0.731183a + 0.182796
a
6
=
u
2
+ 1
u
2
a
3
=
0.0430108au
22
+ 0.0107527u
22
+ ··· + 0.924731a + 0.731183
u
21
4u
20
+ ··· + au + u
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
0.0430108au
22
+ 0.0107527u
22
+ ··· + 0.924731a + 0.731183
0.311828au
22
+ 0.172043u
22
+ ··· 0.204301a 0.301075
a
10
=
0.204301au
22
+ 0.301075u
22
+ ··· + 0.892473a 0.526882
0.0107527au
22
0.247312u
22
+ ··· 0.268817a + 0.182796
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
22
+ 4u
21
+ 56u
20
+ 44u
19
+ 304u
18
+ 152u
17
+ 744u
16
20u
15
+ 440u
14
1456u
13
1824u
12
4084u
11
4572u
10
5296u
9
4580u
8
3604u
7
2220u
6
1204u
5
428u
4
112u
3
+ 12u
2
+ 24u + 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
46
u
45
+ ··· 152u 399
c
2
(u
23
11u
22
+ ··· + 6u
2
1)
2
c
4
, c
10
u
46
u
45
+ ··· + 12u + 3
c
5
, c
9
u
46
u
45
+ ··· 2u 3
c
6
, c
7
, c
8
c
11
, c
12
(u
23
3u
22
+ ··· + 6u
2
1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
46
+ 3y
45
+ ··· 2710768y + 159201
c
2
(y
23
y
22
+ ··· + 12y 1)
2
c
4
, c
10
y
46
+ 7y
45
+ ··· 120y + 9
c
5
, c
9
y
46
+ 11y
45
+ ··· 268y + 9
c
6
, c
7
, c
8
c
11
, c
12
(y
23
+ 31y
22
+ ··· + 12y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.122130 + 0.956594I
a = 0.765870 0.027652I
b = 1.268860 0.013685I
1.83677 + 5.25378I 0.17726 9.24428I
u = 0.122130 + 0.956594I
a = 0.36753 1.77726I
b = 0.81010 2.41860I
1.83677 + 5.25378I 0.17726 9.24428I
u = 0.122130 0.956594I
a = 0.765870 + 0.027652I
b = 1.268860 + 0.013685I
1.83677 5.25378I 0.17726 + 9.24428I
u = 0.122130 0.956594I
a = 0.36753 + 1.77726I
b = 0.81010 + 2.41860I
1.83677 5.25378I 0.17726 + 9.24428I
u = 0.191484 + 1.140050I
a = 1.05870 + 0.99434I
b = 0.89319 + 1.70209I
6.33180 4.80882I 8.17045 + 6.89379I
u = 0.191484 + 1.140050I
a = 0.050084 0.434449I
b = 0.49879 1.76452I
6.33180 4.80882I 8.17045 + 6.89379I
u = 0.191484 1.140050I
a = 1.05870 0.99434I
b = 0.89319 1.70209I
6.33180 + 4.80882I 8.17045 6.89379I
u = 0.191484 1.140050I
a = 0.050084 + 0.434449I
b = 0.49879 + 1.76452I
6.33180 + 4.80882I 8.17045 6.89379I
u = 0.372225 + 1.111890I
a = 0.060513 + 0.762765I
b = 0.01206 + 1.73332I
3.82773 5.60663I 3.50764 + 12.63284I
u = 0.372225 + 1.111890I
a = 0.287984 0.223234I
b = 0.049443 1.117410I
3.82773 5.60663I 3.50764 + 12.63284I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.372225 1.111890I
a = 0.060513 0.762765I
b = 0.01206 1.73332I
3.82773 + 5.60663I 3.50764 12.63284I
u = 0.372225 1.111890I
a = 0.287984 + 0.223234I
b = 0.049443 + 1.117410I
3.82773 + 5.60663I 3.50764 12.63284I
u = 0.044921 + 0.795699I
a = 0.155806 + 0.550016I
b = 0.92072 + 1.80326I
0.70591 2.58349I 2.14863 + 0.79389I
u = 0.044921 + 0.795699I
a = 1.49082 + 0.70078I
b = 0.129486 + 0.339807I
0.70591 2.58349I 2.14863 + 0.79389I
u = 0.044921 0.795699I
a = 0.155806 0.550016I
b = 0.92072 1.80326I
0.70591 + 2.58349I 2.14863 0.79389I
u = 0.044921 0.795699I
a = 1.49082 0.70078I
b = 0.129486 0.339807I
0.70591 + 2.58349I 2.14863 0.79389I
u = 0.652551 + 0.364111I
a = 0.777609 0.307375I
b = 0.030991 + 0.450120I
0.76689 2.11198I 16.3750 + 9.4338I
u = 0.652551 + 0.364111I
a = 0.143409 + 0.513462I
b = 0.289886 0.214796I
0.76689 2.11198I 16.3750 + 9.4338I
u = 0.652551 0.364111I
a = 0.777609 + 0.307375I
b = 0.030991 0.450120I
0.76689 + 2.11198I 16.3750 9.4338I
u = 0.652551 0.364111I
a = 0.143409 0.513462I
b = 0.289886 + 0.214796I
0.76689 + 2.11198I 16.3750 9.4338I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.349386 + 0.538209I
a = 0.42996 + 1.38774I
b = 0.220108 0.165488I
1.10752 2.96048I 0.41922 + 9.76981I
u = 0.349386 + 0.538209I
a = 0.255176 + 0.029202I
b = 0.477925 + 1.112960I
1.10752 2.96048I 0.41922 + 9.76981I
u = 0.349386 0.538209I
a = 0.42996 1.38774I
b = 0.220108 + 0.165488I
1.10752 + 2.96048I 0.41922 9.76981I
u = 0.349386 0.538209I
a = 0.255176 0.029202I
b = 0.477925 1.112960I
1.10752 + 2.96048I 0.41922 9.76981I
u = 0.540325
a = 0.161694
b = 0.714768
0.662774 12.3650
u = 0.540325
a = 1.84732
b = 0.0508933
0.662774 12.3650
u = 0.00286 + 1.69297I
a = 0.097069 + 0.365520I
b = 0.632924 + 0.248965I
9.70029 2.55133I 2.45391 + 1.84917I
u = 0.00286 + 1.69297I
a = 0.82449 + 2.84829I
b = 1.16616 + 3.71038I
9.70029 2.55133I 2.45391 + 1.84917I
u = 0.00286 1.69297I
a = 0.097069 0.365520I
b = 0.632924 0.248965I
9.70029 + 2.55133I 2.45391 1.84917I
u = 0.00286 1.69297I
a = 0.82449 2.84829I
b = 1.16616 3.71038I
9.70029 + 2.55133I 2.45391 1.84917I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.294369 + 0.074043I
a = 1.04036 + 1.99161I
b = 0.612571 1.075480I
1.32345 + 3.87153I 12.8892 8.7586I
u = 0.294369 + 0.074043I
a = 2.85549 + 3.36109I
b = 0.387083 0.453910I
1.32345 + 3.87153I 12.8892 8.7586I
u = 0.294369 0.074043I
a = 1.04036 1.99161I
b = 0.612571 + 1.075480I
1.32345 3.87153I 12.8892 + 8.7586I
u = 0.294369 0.074043I
a = 2.85549 3.36109I
b = 0.387083 + 0.453910I
1.32345 3.87153I 12.8892 + 8.7586I
u = 0.02789 + 1.71844I
a = 1.84808 + 0.03407I
b = 3.20107 + 0.16628I
11.44590 + 5.82985I 0.97520 7.07929I
u = 0.02789 + 1.71844I
a = 0.69611 3.19548I
b = 0.89452 3.65297I
11.44590 + 5.82985I 0.97520 7.07929I
u = 0.02789 1.71844I
a = 1.84808 0.03407I
b = 3.20107 0.16628I
11.44590 5.82985I 0.97520 + 7.07929I
u = 0.02789 1.71844I
a = 0.69611 + 3.19548I
b = 0.89452 + 3.65297I
11.44590 5.82985I 0.97520 + 7.07929I
u = 0.09919 + 1.75130I
a = 0.00783 1.65242I
b = 0.49848 2.29807I
14.0207 7.5990I 0.46890 + 9.57458I
u = 0.09919 + 1.75130I
a = 0.32195 + 2.39070I
b = 0.07837 + 3.13179I
14.0207 7.5990I 0.46890 + 9.57458I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.09919 1.75130I
a = 0.00783 + 1.65242I
b = 0.49848 + 2.29807I
14.0207 + 7.5990I 0.46890 9.57458I
u = 0.09919 1.75130I
a = 0.32195 2.39070I
b = 0.07837 3.13179I
14.0207 + 7.5990I 0.46890 9.57458I
u = 0.05145 + 1.75720I
a = 1.07306 + 1.90472I
b = 0.77795 + 2.38432I
16.7750 5.8630I 8.34566 + 4.67678I
u = 0.05145 + 1.75720I
a = 0.43211 2.58792I
b = 0.94732 3.61321I
16.7750 5.8630I 8.34566 + 4.67678I
u = 0.05145 1.75720I
a = 1.07306 1.90472I
b = 0.77795 2.38432I
16.7750 + 5.8630I 8.34566 4.67678I
u = 0.05145 1.75720I
a = 0.43211 + 2.58792I
b = 0.94732 + 3.61321I
16.7750 + 5.8630I 8.34566 4.67678I
16
III.
I
u
3
= hu
10
+3u
9
+· · ·+b+1, u
13
2u
12
+· · ·+a+3, u
14
+2u
13
+· · ·+3u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
a
4
=
u
13
+ 2u
12
+ ··· + 3u
2
3
u
10
3u
9
+ ··· 6u 1
a
2
=
u
13
2u
12
+ ··· 13u 2
u
11
+ 2u
10
+ ··· + 2u + 1
a
6
=
u
2
+ 1
u
2
a
3
=
u
13
+ 2u
12
+ ··· 5u 4
u
11
3u
10
+ ··· 6u 1
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
u
13
+ 2u
12
+ ··· 4u 3
u
11
3u
10
+ ··· 7u 1
a
10
=
u
13
2u
12
+ ··· 11u + 1
u
6
+ 2u
5
+ 5u
4
+ 7u
3
+ 6u
2
+ 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
12
u
11
+ 9u
10
+ u
9
+ 41u
8
+ 44u
7
+ 112u
6
+ 135u
5
+ 154u
4
+ 129u
3
+ 75u
2
+ 32u + 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
14
5u
13
+ ··· 6u + 1
c
2
u
14
+ 9u
13
+ ··· + 9u + 1
c
4
, c
10
u
14
+ u
13
+ ··· + 3u
2
+ 1
c
5
, c
9
u
14
+ 3u
12
+ ··· u + 1
c
6
, c
7
, c
8
u
14
+ 2u
13
+ ··· + 3u + 1
c
11
, c
12
u
14
2u
13
+ ··· 3u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
14
+ 5y
13
+ ··· + 6y + 1
c
2
y
14
+ y
13
+ ··· 3y + 1
c
4
, c
10
y
14
+ 5y
13
+ ··· + 6y + 1
c
5
, c
9
y
14
+ 6y
13
+ ··· + 5y + 1
c
6
, c
7
, c
8
c
11
, c
12
y
14
+ 20y
13
+ ··· + 27y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.018194 + 0.849931I
a = 0.603835 + 1.159030I
b = 0.78541 + 1.37748I
1.25778 + 3.72574I 0.64115 6.57494I
u = 0.018194 0.849931I
a = 0.603835 1.159030I
b = 0.78541 1.37748I
1.25778 3.72574I 0.64115 + 6.57494I
u = 0.250655 + 1.124850I
a = 0.322735 0.654478I
b = 0.10209 1.57296I
4.80751 4.95467I 2.28737 + 6.46163I
u = 0.250655 1.124850I
a = 0.322735 + 0.654478I
b = 0.10209 + 1.57296I
4.80751 + 4.95467I 2.28737 6.46163I
u = 0.623943 + 0.429456I
a = 0.426245 + 0.345340I
b = 0.178249 0.359896I
0.26055 2.09268I 4.56828 + 7.08050I
u = 0.623943 0.429456I
a = 0.426245 0.345340I
b = 0.178249 + 0.359896I
0.26055 + 2.09268I 4.56828 7.08050I
u = 0.06757 + 1.51095I
a = 0.245172 0.589528I
b = 0.557839 0.723961I
5.53297 4.18476I 6.81071 + 6.85703I
u = 0.06757 1.51095I
a = 0.245172 + 0.589528I
b = 0.557839 + 0.723961I
5.53297 + 4.18476I 6.81071 6.85703I
u = 0.00788 + 1.69196I
a = 1.05669 + 1.77912I
b = 1.84143 + 2.01119I
10.36330 + 3.84481I 1.07477 7.29533I
u = 0.00788 1.69196I
a = 1.05669 1.77912I
b = 1.84143 2.01119I
10.36330 3.84481I 1.07477 + 7.29533I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.018196 + 0.300578I
a = 2.84368 0.47970I
b = 0.198823 0.929952I
0.58641 3.67714I 0.36024 + 5.91846I
u = 0.018196 0.300578I
a = 2.84368 + 0.47970I
b = 0.198823 + 0.929952I
0.58641 + 3.67714I 0.36024 5.91846I
u = 0.06571 + 1.74745I
a = 0.05215 2.29837I
b = 0.44633 3.02735I
15.0739 6.2927I 2.09938 + 4.32499I
u = 0.06571 1.74745I
a = 0.05215 + 2.29837I
b = 0.44633 + 3.02735I
15.0739 + 6.2927I 2.09938 4.32499I
21
IV. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
1
0
a
8
=
1
0
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
6
=
1
0
a
3
=
1
1
a
11
=
1
0
a
9
=
1
0
a
5
=
1
1
a
10
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
9
, c
10
u + 1
c
2
, c
6
, c
7
c
8
, c
11
, c
12
u
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
9
, c
10
y 1
c
2
, c
6
, c
7
c
8
, c
11
, c
12
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
(u + 1)(u
14
5u
13
+ ··· 6u + 1)(u
37
+ 4u
36
+ ··· + 24u 1)
· (u
46
u
45
+ ··· 152u 399)
c
2
u(u
14
+ 9u
13
+ ··· + 9u + 1)(u
23
11u
22
+ ··· + 6u
2
1)
2
· (u
37
+ 22u
36
+ ··· 87u 11)
c
4
, c
10
(u + 1)(u
14
+ u
13
+ ··· + 3u
2
+ 1)(u
37
+ 2u
35
+ ··· 31u
2
3)
· (u
46
u
45
+ ··· + 12u + 3)
c
5
, c
9
(u + 1)(u
14
+ 3u
12
+ ··· u + 1)(u
37
u
36
+ ··· + 3u 1)
· (u
46
u
45
+ ··· 2u 3)
c
6
, c
7
, c
8
u(u
14
+ 2u
13
+ ··· + 3u + 1)(u
23
3u
22
+ ··· + 6u
2
1)
2
· (u
37
+ 5u
36
+ ··· 93u 11)
c
11
, c
12
u(u
14
2u
13
+ ··· 3u + 1)(u
23
3u
22
+ ··· + 6u
2
1)
2
· (u
37
+ 5u
36
+ ··· 93u 11)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)(y
14
+ 5y
13
+ ··· + 6y + 1)(y
37
32y
36
+ ··· + 114y 1)
· (y
46
+ 3y
45
+ ··· 2710768y + 159201)
c
2
y(y
14
+ y
13
+ ··· 3y + 1)(y
23
y
22
+ ··· + 12y 1)
2
· (y
37
+ 46y
35
+ ··· + 419y 121)
c
4
, c
10
(y 1)(y
14
+ 5y
13
+ ··· + 6y + 1)(y
37
+ 4y
36
+ ··· 186y 9)
· (y
46
+ 7y
45
+ ··· 120y + 9)
c
5
, c
9
(y 1)(y
14
+ 6y
13
+ ··· + 5y + 1)(y
37
15y
36
+ ··· + 39y 1)
· (y
46
+ 11y
45
+ ··· 268y + 9)
c
6
, c
7
, c
8
c
11
, c
12
y(y
14
+ 20y
13
+ ··· + 27y + 1)(y
23
+ 31y
22
+ ··· + 12y 1)
2
· (y
37
+ 51y
36
+ ··· + 245y 121)
27