12a
0814
(K12a
0814
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 10 3 11 12 6 1 9 8
Solving Sequence
8,12
9
1,4
2 5 11 7 3 6 10
c
8
c
12
c
1
c
4
c
11
c
7
c
3
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h9.56930 × 10
26
u
91
+ 4.97491 × 10
26
u
90
+ ··· + 1.83397 × 10
27
b + 3.92664 × 10
27
,
5.52127 × 10
26
u
91
8.62278 × 10
26
u
90
+ ··· + 1.83397 × 10
27
a 2.61403 × 10
27
, u
92
4u
91
+ ··· 8u
2
+ 1i
I
u
2
= hb u 1, u
2
+ a + u + 3, u
3
+ 2u 1i
I
u
3
= h−u
2
a u
2
+ b + u 1, u
2
a + a
2
+ 2au u
2
a + 2u 3, u
3
u
2
+ 2u 1i
I
u
4
= hb u 1, u
3
u
2
+ a u 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 105 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9.57 × 10
26
u
91
+ 4.97 × 10
26
u
90
+ · · · + 1.83 × 10
27
b + 3.93 ×
10
27
, 5.52 × 10
26
u
91
8.62 × 10
26
u
90
+ · · · + 1.83 × 10
27
a 2.61 ×
10
27
, u
92
4u
91
+ · · · 8u
2
+ 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
0.301056u
91
+ 0.470171u
90
+ ··· 2.96443u + 1.42534
0.521781u
91
0.271265u
90
+ ··· 1.81529u 2.14106
a
2
=
0.132509u
91
+ 1.28972u
90
+ ··· 1.42156u + 1.98262
1.74961u
91
+ 3.41466u
90
+ ··· 2.45957u 2.11975
a
5
=
0.499637u
91
3.19051u
90
+ ··· 2.69354u 1.70145
1.20761u
91
2.29856u
90
+ ··· + 2.49070u + 0.858623
a
11
=
u
u
3
+ u
a
7
=
u
4
u
2
+ 1
u
6
2u
4
u
2
a
3
=
0.133234u
91
0.329272u
90
+ ··· 4.03448u 0.614475
0.164836u
91
+ 0.0117691u
90
+ ··· 0.440981u 0.836998
a
6
=
0.500057u
91
1.31833u
90
+ ··· 1.15620u + 0.817075
0.663481u
91
+ 0.793381u
90
+ ··· 0.361576u 1.01523
a
10
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2365091250833776522114268693
916983961196051693206135667
u
91
18729853830167391906229939375
1833967922392103386412271334
u
90
+
···
1024932205509583481893242009
1833967922392103386412271334
u
16203344775728881724174542717
1833967922392103386412271334
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
92
11u
91
+ ··· + 10u + 1
c
3
, c
6
u
92
+ 4u
91
+ ··· 576u 128
c
5
, c
9
u
92
+ 2u
91
+ ··· 352u 64
c
7
u
92
+ 4u
91
+ ··· 228u + 36
c
8
, c
11
, c
12
u
92
4u
91
+ ··· 8u
2
+ 1
c
10
u
92
20u
91
+ ··· 102752u + 13633
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
92
89y
91
+ ··· 208y + 1
c
3
, c
6
y
92
54y
91
+ ··· 716800y + 16384
c
5
, c
9
y
92
+ 42y
91
+ ··· 25600y + 4096
c
7
y
92
+ 4y
91
+ ··· + 8856y + 1296
c
8
, c
11
, c
12
y
92
+ 84y
91
+ ··· 16y + 1
c
10
y
92
+ 28y
91
+ ··· + 10518208240y + 185858689
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.142365 + 1.052150I
a = 0.00718 + 2.51345I
b = 0.224624 1.256470I
1.67872 + 2.40443I 0
u = 0.142365 1.052150I
a = 0.00718 2.51345I
b = 0.224624 + 1.256470I
1.67872 2.40443I 0
u = 0.031893 + 1.093450I
a = 0.789128 + 0.767645I
b = 1.344780 0.179061I
0.0460196 + 0.0531118I 0
u = 0.031893 1.093450I
a = 0.789128 0.767645I
b = 1.344780 + 0.179061I
0.0460196 0.0531118I 0
u = 0.227106 + 1.094750I
a = 0.204440 + 0.030157I
b = 0.889203 + 0.208382I
0.63573 + 4.55193I 0
u = 0.227106 1.094750I
a = 0.204440 0.030157I
b = 0.889203 0.208382I
0.63573 4.55193I 0
u = 0.343914 + 1.068750I
a = 0.718999 1.078310I
b = 1.331240 0.090187I
5.38660 + 7.98182I 0
u = 0.343914 1.068750I
a = 0.718999 + 1.078310I
b = 1.331240 + 0.090187I
5.38660 7.98182I 0
u = 0.448104 + 0.745173I
a = 0.74104 1.60583I
b = 0.196534 0.021984I
4.37379 + 8.39720I 0
u = 0.448104 0.745173I
a = 0.74104 + 1.60583I
b = 0.196534 + 0.021984I
4.37379 8.39720I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.179563 + 1.129290I
a = 1.30215 1.10394I
b = 1.63847 0.22558I
7.32936 2.64950I 0
u = 0.179563 1.129290I
a = 1.30215 + 1.10394I
b = 1.63847 + 0.22558I
7.32936 + 2.64950I 0
u = 0.666539 + 0.497806I
a = 0.904957 0.193946I
b = 0.316460 0.675572I
0.72279 2.24152I 17.3233 + 3.8345I
u = 0.666539 0.497806I
a = 0.904957 + 0.193946I
b = 0.316460 + 0.675572I
0.72279 + 2.24152I 17.3233 3.8345I
u = 0.761685 + 0.298417I
a = 0.456120 + 0.768958I
b = 1.38372 1.02861I
5.88875 12.68560I 15.9259 + 8.5530I
u = 0.761685 0.298417I
a = 0.456120 0.768958I
b = 1.38372 + 1.02861I
5.88875 + 12.68560I 15.9259 8.5530I
u = 0.789964 + 0.118774I
a = 0.661860 0.366395I
b = 1.091720 0.159682I
8.30183 3.84281I 17.8337 + 2.8735I
u = 0.789964 0.118774I
a = 0.661860 + 0.366395I
b = 1.091720 + 0.159682I
8.30183 + 3.84281I 17.8337 2.8735I
u = 0.716560 + 0.297487I
a = 0.002046 1.151310I
b = 0.869946 + 0.259215I
0.00340 8.16832I 12.8516 + 8.4123I
u = 0.716560 0.297487I
a = 0.002046 + 1.151310I
b = 0.869946 0.259215I
0.00340 + 8.16832I 12.8516 8.4123I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.704793 + 0.307944I
a = 0.792982 + 0.830802I
b = 1.05582 1.30510I
7.88429 + 5.84555I 17.7064 5.3639I
u = 0.704793 0.307944I
a = 0.792982 0.830802I
b = 1.05582 + 1.30510I
7.88429 5.84555I 17.7064 + 5.3639I
u = 0.387666 + 0.648093I
a = 0.001726 + 0.890620I
b = 0.716919 + 0.032222I
1.33594 + 4.23494I 9.89163 3.43303I
u = 0.387666 0.648093I
a = 0.001726 0.890620I
b = 0.716919 0.032222I
1.33594 4.23494I 9.89163 + 3.43303I
u = 0.694128 + 0.276007I
a = 0.208000 0.170305I
b = 1.67772 + 0.64980I
2.89176 5.69556I 14.8915 + 6.2831I
u = 0.694128 0.276007I
a = 0.208000 + 0.170305I
b = 1.67772 0.64980I
2.89176 + 5.69556I 14.8915 6.2831I
u = 0.639348 + 0.362879I
a = 0.080883 + 0.391950I
b = 0.796662 0.064064I
2.87803 3.21226I 7.10916 + 5.15078I
u = 0.639348 0.362879I
a = 0.080883 0.391950I
b = 0.796662 + 0.064064I
2.87803 + 3.21226I 7.10916 5.15078I
u = 0.409671 + 0.598345I
a = 1.35127 1.41304I
b = 0.419113 0.362791I
6.70228 1.95771I 15.9931 0.5196I
u = 0.409671 0.598345I
a = 1.35127 + 1.41304I
b = 0.419113 + 0.362791I
6.70228 + 1.95771I 15.9931 + 0.5196I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.119770 + 1.269710I
a = 0.147331 0.963782I
b = 0.148541 + 0.825571I
3.07060 + 1.96014I 0
u = 0.119770 1.269710I
a = 0.147331 + 0.963782I
b = 0.148541 0.825571I
3.07060 1.96014I 0
u = 0.654898 + 0.270175I
a = 0.727352 + 1.149210I
b = 0.045234 + 0.192756I
1.56617 2.78383I 14.9152 + 4.7455I
u = 0.654898 0.270175I
a = 0.727352 1.149210I
b = 0.045234 0.192756I
1.56617 + 2.78383I 14.9152 4.7455I
u = 0.694676 + 0.105876I
a = 0.717960 + 0.636631I
b = 0.237790 + 0.206297I
2.32258 1.07187I 15.2882 + 4.7085I
u = 0.694676 0.105876I
a = 0.717960 0.636631I
b = 0.237790 0.206297I
2.32258 + 1.07187I 15.2882 4.7085I
u = 0.504245 + 0.477251I
a = 0.159414 0.994757I
b = 0.156886 + 0.230667I
3.40182 0.56518I 5.80669 + 2.57586I
u = 0.504245 0.477251I
a = 0.159414 + 0.994757I
b = 0.156886 0.230667I
3.40182 + 0.56518I 5.80669 2.57586I
u = 0.662313 + 0.175373I
a = 0.022080 0.544950I
b = 1.85088 + 0.97936I
4.18177 + 0.78779I 16.7968 0.8436I
u = 0.662313 0.175373I
a = 0.022080 + 0.544950I
b = 1.85088 0.97936I
4.18177 0.78779I 16.7968 + 0.8436I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.636842 + 0.239791I
a = 0.056662 1.355770I
b = 0.795740 + 0.685955I
1.99118 + 2.67547I 15.2993 6.0545I
u = 0.636842 0.239791I
a = 0.056662 + 1.355770I
b = 0.795740 0.685955I
1.99118 2.67547I 15.2993 + 6.0545I
u = 0.290523 + 0.597652I
a = 0.34550 + 2.29035I
b = 0.306287 0.344198I
1.48070 + 2.06950I 11.57303 0.92768I
u = 0.290523 0.597652I
a = 0.34550 2.29035I
b = 0.306287 + 0.344198I
1.48070 2.06950I 11.57303 + 0.92768I
u = 0.260268 + 1.313650I
a = 0.276935 1.203230I
b = 0.47777 + 1.57760I
2.10659 + 2.37333I 0
u = 0.260268 1.313650I
a = 0.276935 + 1.203230I
b = 0.47777 1.57760I
2.10659 2.37333I 0
u = 0.195760 + 1.328170I
a = 2.45199 2.17556I
b = 2.43344 + 2.90159I
1.71998 + 2.56116I 0
u = 0.195760 1.328170I
a = 2.45199 + 2.17556I
b = 2.43344 2.90159I
1.71998 2.56116I 0
u = 0.338504 + 1.319110I
a = 0.899677 0.362618I
b = 1.041090 0.688240I
3.80390 + 0.22278I 0
u = 0.338504 1.319110I
a = 0.899677 + 0.362618I
b = 1.041090 + 0.688240I
3.80390 0.22278I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.618274 + 0.124073I
a = 1.250510 0.537485I
b = 1.251080 0.087774I
10.31260 0.38606I 19.6066 + 9.7099I
u = 0.618274 0.124073I
a = 1.250510 + 0.537485I
b = 1.251080 + 0.087774I
10.31260 + 0.38606I 19.6066 9.7099I
u = 0.230538 + 1.357000I
a = 1.213770 0.237388I
b = 1.37325 0.97206I
5.59686 3.43534I 0
u = 0.230538 1.357000I
a = 1.213770 + 0.237388I
b = 1.37325 + 0.97206I
5.59686 + 3.43534I 0
u = 0.255344 + 1.366370I
a = 3.38633 + 0.53751I
b = 3.62963 + 0.34549I
0.70883 + 4.11092I 0
u = 0.255344 1.366370I
a = 3.38633 0.53751I
b = 3.62963 0.34549I
0.70883 4.11092I 0
u = 0.177622 + 1.386400I
a = 1.86610 0.97129I
b = 2.19074 + 1.06368I
4.32545 + 2.08315I 0
u = 0.177622 1.386400I
a = 1.86610 + 0.97129I
b = 2.19074 1.06368I
4.32545 2.08315I 0
u = 0.25033 + 1.39564I
a = 2.35899 + 0.08339I
b = 2.87723 + 0.04231I
3.23137 + 5.92026I 0
u = 0.25033 1.39564I
a = 2.35899 0.08339I
b = 2.87723 0.04231I
3.23137 5.92026I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.15781 + 1.41089I
a = 2.15833 0.39554I
b = 2.63802 + 1.10324I
5.23253 2.39068I 0
u = 0.15781 1.41089I
a = 2.15833 + 0.39554I
b = 2.63802 1.10324I
5.23253 + 2.39068I 0
u = 0.12683 + 1.41487I
a = 0.729131 0.110038I
b = 0.861769 + 1.075790I
4.56630 + 0.56531I 0
u = 0.12683 1.41487I
a = 0.729131 + 0.110038I
b = 0.861769 1.075790I
4.56630 0.56531I 0
u = 0.25775 + 1.40739I
a = 0.554080 0.855524I
b = 0.93444 + 1.57819I
3.79344 6.12228I 0
u = 0.25775 1.40739I
a = 0.554080 + 0.855524I
b = 0.93444 1.57819I
3.79344 + 6.12228I 0
u = 0.27288 + 1.41137I
a = 2.55359 + 0.49150I
b = 2.89375 + 0.48625I
2.49560 9.21773I 0
u = 0.27288 1.41137I
a = 2.55359 0.49150I
b = 2.89375 0.48625I
2.49560 + 9.21773I 0
u = 0.11384 + 1.44409I
a = 1.88011 0.47011I
b = 2.46388 + 0.65654I
7.85404 + 2.62441I 0
u = 0.11384 1.44409I
a = 1.88011 + 0.47011I
b = 2.46388 0.65654I
7.85404 2.62441I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.28096 + 1.42230I
a = 2.01261 + 0.55638I
b = 2.69665 0.44481I
5.49300 11.79800I 0
u = 0.28096 1.42230I
a = 2.01261 0.55638I
b = 2.69665 + 0.44481I
5.49300 + 11.79800I 0
u = 0.27578 + 1.42573I
a = 2.79313 + 0.98533I
b = 3.16091 1.91717I
2.33948 + 9.41935I 0
u = 0.27578 1.42573I
a = 2.79313 0.98533I
b = 3.16091 + 1.91717I
2.33948 9.41935I 0
u = 0.17968 + 1.44599I
a = 1.255330 0.089450I
b = 1.69161 0.12091I
9.52465 3.04531I 0
u = 0.17968 1.44599I
a = 1.255330 + 0.089450I
b = 1.69161 + 0.12091I
9.52465 + 3.04531I 0
u = 0.13242 + 1.45194I
a = 0.68894 + 1.87780I
b = 0.70885 2.81549I
0.261764 0.086646I 0
u = 0.13242 1.45194I
a = 0.68894 1.87780I
b = 0.70885 + 2.81549I
0.261764 + 0.086646I 0
u = 0.24084 + 1.43911I
a = 1.43804 0.52544I
b = 1.83565 + 0.29596I
8.65874 6.43078I 0
u = 0.24084 1.43911I
a = 1.43804 + 0.52544I
b = 1.83565 0.29596I
8.65874 + 6.43078I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.30135 + 1.42773I
a = 2.83705 + 0.26025I
b = 3.29716 1.20217I
0.3747 16.5437I 0
u = 0.30135 1.42773I
a = 2.83705 0.26025I
b = 3.29716 + 1.20217I
0.3747 + 16.5437I 0
u = 0.07972 + 1.47696I
a = 1.09343 + 1.10864I
b = 1.27233 2.06372I
2.77556 + 6.92698I 0
u = 0.07972 1.47696I
a = 1.09343 1.10864I
b = 1.27233 + 2.06372I
2.77556 6.92698I 0
u = 0.517611
a = 4.21782
b = 2.35556
2.53998 87.3520
u = 0.323090 + 0.404159I
a = 0.870583 + 0.503536I
b = 0.938911 + 0.326913I
0.442132 0.425306I 11.54885 + 1.57345I
u = 0.323090 0.404159I
a = 0.870583 0.503536I
b = 0.938911 0.326913I
0.442132 + 0.425306I 11.54885 1.57345I
u = 0.22336 + 1.49048I
a = 0.84405 + 1.24122I
b = 1.00216 2.02573I
7.17979 5.45280I 0
u = 0.22336 1.49048I
a = 0.84405 1.24122I
b = 1.00216 + 2.02573I
7.17979 + 5.45280I 0
u = 0.391886
a = 0.753572
b = 0.538627
0.730054 13.0620
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.246092 + 0.167191I
a = 1.31115 + 1.05386I
b = 0.719211 + 0.058991I
0.764396 0.029182I 11.62093 0.70639I
u = 0.246092 0.167191I
a = 1.31115 1.05386I
b = 0.719211 0.058991I
0.764396 + 0.029182I 11.62093 + 0.70639I
14
II. I
u
2
= hb u 1, u
2
+ a + u + 3, u
3
+ 2u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
u
2
u 3
u + 1
a
2
=
u
2
2u 3
2u + 1
a
5
=
u
u
a
11
=
u
u + 1
a
7
=
u
2
u + 1
u
2
+ 2u 1
a
3
=
u
2
u 3
u + 1
a
6
=
u
2
u + 1
u
2
+ 2u 1
a
10
=
u
2
+ u
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
+ u + 2
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
, c
8
, c
10
u
3
+ 2u 1
c
7
u
3
3u
2
+ 5u 2
c
9
, c
11
, c
12
u
3
+ 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
8
, c
9
c
10
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
c
7
y
3
+ y
2
+ 13y 4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.670516 0.802255I
b = 0.77330 + 1.46771I
7.79580 + 5.13794I 4.53505 0.52866I
u = 0.22670 1.46771I
a = 0.670516 + 0.802255I
b = 0.77330 1.46771I
7.79580 5.13794I 4.53505 + 0.52866I
u = 0.453398
a = 3.65897
b = 1.45340
2.43213 3.07010
18
III.
I
u
3
= h−u
2
au
2
+b+u1, u
2
a+a
2
+2auu
2
a+2u3, u
3
u
2
+2u1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
a
u
2
a + u
2
u + 1
a
2
=
au 2u
2
u 1
u
2
a + au a + 3u 2
a
5
=
u
2
a u 1
u
2
a u
2
+ 3u 2
a
11
=
u
u
2
u + 1
a
7
=
u
u
a
3
=
au u
2
+ 2a + u
u
2
a + au + 2u
2
a 2u + 1
a
6
=
u
2
a u 1
u
2
a u
2
+ 3u 2
a
10
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
a + 3au + 4u
2
+ u 15
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u
2
+ u 1)
3
c
4
, c
6
(u
2
u 1)
3
c
5
, c
9
u
6
c
7
, c
10
(u
3
+ u
2
1)
2
c
8
(u
3
u
2
+ 2u 1)
2
c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
(y
2
3y + 1)
3
c
5
, c
9
y
6
c
7
, c
10
(y
3
y
2
+ 2y 1)
2
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.286800 0.397354I
b = 1.48511 0.80786I
5.85852 2.82812I 13.61882 1.93520I
u = 0.215080 + 1.307140I
a = 0.19428 1.65465I
b = 0.27003 + 2.11500I
2.03717 2.82812I 12.9982 + 11.8301I
u = 0.215080 1.307140I
a = 1.286800 + 0.397354I
b = 1.48511 + 0.80786I
5.85852 + 2.82812I 13.61882 + 1.93520I
u = 0.215080 1.307140I
a = 0.19428 + 1.65465I
b = 0.27003 2.11500I
2.03717 + 2.82812I 12.9982 11.8301I
u = 0.569840
a = 1.38856
b = 0.303987
2.10041 16.8580
u = 0.569840
a = 1.57360
b = 1.26585
9.99610 8.90830
22
IV. I
u
4
= hb u 1, u
3
u
2
+ a u 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
4
=
u
3
+ u
2
+ u + 1
u + 1
a
2
=
u
3
+ u
2
+ 1
2u + 1
a
5
=
u
u
a
11
=
u
u
3
+ u
a
7
=
u
3
+ u
2
+ 2u + 2
u
3
+ u + 1
a
3
=
u
3
+ u
2
+ u + 1
u + 1
a
6
=
u
3
+ u
2
+ 2u + 2
u
3
+ u + 1
a
10
=
u
3
+ 2u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
+ 3u
2
u 10
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
6
u
4
c
4
(u + 1)
4
c
5
, c
8
, c
10
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
7
(u
2
+ u + 1)
2
c
9
, c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
6
y
4
c
5
, c
8
, c
9
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
7
(y
2
+ y + 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.692440 + 0.318148I
b = 0.378256 + 0.440597I
1.64493 + 2.02988I 8.92268 2.50966I
u = 0.621744 0.440597I
a = 0.692440 0.318148I
b = 0.378256 0.440597I
1.64493 2.02988I 8.92268 + 2.50966I
u = 0.121744 + 1.306620I
a = 1.192440 0.547877I
b = 1.12174 + 1.30662I
1.64493 2.02988I 14.5773 + 1.8205I
u = 0.121744 1.306620I
a = 1.192440 + 0.547877I
b = 1.12174 1.30662I
1.64493 + 2.02988I 14.5773 1.8205I
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
7
)(u
2
+ u 1)
3
(u
92
11u
91
+ ··· + 10u + 1)
c
3
u
7
(u
2
+ u 1)
3
(u
92
+ 4u
91
+ ··· 576u 128)
c
4
((u + 1)
7
)(u
2
u 1)
3
(u
92
11u
91
+ ··· + 10u + 1)
c
5
u
6
(u
3
+ 2u 1)(u
4
+ u
3
+ ··· + 2u + 1)(u
92
+ 2u
91
+ ··· 352u 64)
c
6
u
7
(u
2
u 1)
3
(u
92
+ 4u
91
+ ··· 576u 128)
c
7
(u
2
+ u + 1)
2
(u
3
3u
2
+ 5u 2)(u
3
+ u
2
1)
2
· (u
92
+ 4u
91
+ ··· 228u + 36)
c
8
(u
3
+ 2u 1)(u
3
u
2
+ 2u 1)
2
(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
92
4u
91
+ ··· 8u
2
+ 1)
c
9
u
6
(u
3
+ 2u + 1)(u
4
u
3
+ ··· 2u + 1)(u
92
+ 2u
91
+ ··· 352u 64)
c
10
(u
3
+ 2u 1)(u
3
+ u
2
1)
2
(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
92
20u
91
+ ··· 102752u + 13633)
c
11
, c
12
(u
3
+ 2u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
4
u
3
+ 2u
2
2u + 1)
· (u
92
4u
91
+ ··· 8u
2
+ 1)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
7
)(y
2
3y + 1)
3
(y
92
89y
91
+ ··· 208y + 1)
c
3
, c
6
y
7
(y
2
3y + 1)
3
(y
92
54y
91
+ ··· 716800y + 16384)
c
5
, c
9
y
6
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
92
+ 42y
91
+ ··· 25600y + 4096)
c
7
(y
2
+ y + 1)
2
(y
3
y
2
+ 2y 1)
2
(y
3
+ y
2
+ 13y 4)
· (y
92
+ 4y
91
+ ··· + 8856y + 1296)
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
92
+ 84y
91
+ ··· 16y + 1)
c
10
(y
3
y
2
+ 2y 1)
2
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
92
+ 28y
91
+ ··· + 10518208240y + 185858689)
28