12a
0817
(K12a
0817
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 12 3 10 11 1 8 6 9
Solving Sequence
1,4
2 5
3,9
10 12 6 7 11 8
c
1
c
4
c
2
c
9
c
12
c
5
c
6
c
11
c
8
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
17
2u
16
+ ··· + 2b 5u, u
17
+ 5u
16
+ ··· + 2a + 9, u
18
+ 3u
17
+ ··· + 5u 1i
I
u
2
= h5.45567 × 10
75
u
73
+ 4.11793 × 10
76
u
72
+ ··· + 1.46489 × 10
74
b 3.85724 × 10
75
,
1.05682 × 10
75
u
73
8.04501 × 10
75
u
72
+ ··· + 7.32443 × 10
73
a + 2.11780 × 10
75
,
u
74
+ 9u
73
+ ··· + 25u 1i
I
u
3
= hb, 3u
7
+ 5u
6
7u
5
11u
4
+ 5u
3
+ 3u
2
+ a + 7, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
4
= h−16a
7
+ 37a
6
+ 131a
5
231a
4
337a
3
+ 380a
2
+ 86b + 82a 115,
a
8
9a
6
5a
5
+ 18a
4
+ 9a
3
11a
2
5a + 1, u 1i
I
u
5
= hb + u, a + u, u
2
+ u 1i
I
u
6
= hb u 1, a + 2, u
2
+ u 1i
* 6 irreducible components of dim
C
= 0, with total 112 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
17
2u
16
+· · ·+2b 5u, u
17
+5u
16
+· · ·+2a +9, u
18
+3u
17
+· · ·+5u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
1
2
u
17
5
2
u
16
+ ··· +
9
2
u
9
2
1
2
u
17
+ u
16
+ ··· 3u
2
+
5
2
u
a
10
=
u
17
7
2
u
16
+ ··· + 2u
9
2
1
2
u
17
+ u
16
+ ··· 3u
2
+
5
2
u
a
12
=
1
2
u
17
+ 2u
16
+ ···
3
2
u + 3
u
3
u
a
6
=
1
2
u
17
9
2
u
15
+ ··· +
5
2
u 2
1
2
u
17
1
2
u
16
+ ···
3
2
u +
1
2
a
7
=
1
2
u
16
u
15
+ ··· + 3u
5
2
2u
17
3u
16
+ ··· 10u + 2
a
11
=
u
17
+ 3u
16
+ ··· 3u + 4
5
2
u
17
+
9
2
u
16
+ ··· +
25
2
u
5
2
a
8
=
1
2
u
17
3
2
u
16
+ ··· +
7
2
u
7
2
5
2
u
17
9
2
u
16
+ ···
25
2
u +
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
17
+ 4u
16
25u
15
30u
14
+ 79u
13
+ 59u
12
138u
11
+ 24u
10
+
161u
9
176u
8
68u
7
+ 150u
6
100u
5
11u
4
+ 62u
3
42u
2
+ 33u 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
u
18
3u
17
+ ··· 5u 1
c
3
, c
6
, c
9
c
12
u
18
+ u
17
+ ··· 5u 1
c
5
, c
11
u
18
5u
17
+ ··· 8u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
y
18
17y
17
+ ··· 19y + 1
c
3
, c
6
, c
9
c
12
y
18
9y
17
+ ··· 11y + 1
c
5
, c
11
y
18
+ 5y
17
+ ··· + 96y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.989632 + 0.118366I
a = 4.41550 + 0.71456I
b = 0.386038 0.294983I
2.95901 0.54782I 26.1989 20.7388I
u = 0.989632 0.118366I
a = 4.41550 0.71456I
b = 0.386038 + 0.294983I
2.95901 + 0.54782I 26.1989 + 20.7388I
u = 0.422326 + 0.866115I
a = 0.769480 + 0.797033I
b = 1.218200 0.431947I
1.45893 7.65022I 14.1263 + 7.9961I
u = 0.422326 0.866115I
a = 0.769480 0.797033I
b = 1.218200 + 0.431947I
1.45893 + 7.65022I 14.1263 7.9961I
u = 0.505624 + 0.659339I
a = 0.58411 1.48309I
b = 1.039530 + 0.211769I
2.76095 2.16079I 16.8057 + 4.7341I
u = 0.505624 0.659339I
a = 0.58411 + 1.48309I
b = 1.039530 0.211769I
2.76095 + 2.16079I 16.8057 4.7341I
u = 1.217590 + 0.250614I
a = 0.519633 + 0.144909I
b = 0.799643 0.530407I
4.05098 + 7.39685I 19.0054 11.1633I
u = 1.217590 0.250614I
a = 0.519633 0.144909I
b = 0.799643 + 0.530407I
4.05098 7.39685I 19.0054 + 11.1633I
u = 1.24743
a = 0.0578863
b = 0.832862
9.19331 28.9570
u = 1.41940 + 0.07138I
a = 0.323890 0.894237I
b = 0.149813 1.200420I
6.53479 2.67378I 17.5529 + 2.6003I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41940 0.07138I
a = 0.323890 + 0.894237I
b = 0.149813 + 1.200420I
6.53479 + 2.67378I 17.5529 2.6003I
u = 0.072733 + 0.557292I
a = 0.525452 0.116898I
b = 0.545385 0.661484I
2.91333 1.30971I 5.30920 + 2.88857I
u = 0.072733 0.557292I
a = 0.525452 + 0.116898I
b = 0.545385 + 0.661484I
2.91333 + 1.30971I 5.30920 2.88857I
u = 1.49614 + 0.31846I
a = 1.43529 0.90742I
b = 1.35407 + 0.66015I
15.4055 + 9.6614I 20.3543 4.9770I
u = 1.49614 0.31846I
a = 1.43529 + 0.90742I
b = 1.35407 0.66015I
15.4055 9.6614I 20.3543 + 4.9770I
u = 1.53609 + 0.37024I
a = 1.76834 + 0.71483I
b = 1.43095 0.76866I
14.0740 + 16.8703I 19.0655 8.3694I
u = 1.53609 0.37024I
a = 1.76834 0.71483I
b = 1.43095 + 0.76866I
14.0740 16.8703I 19.0655 + 8.3694I
u = 0.218580
a = 3.80642
b = 0.456220
0.840991 10.2070
6
II. I
u
2
= h5.46 × 10
75
u
73
+ 4.12 × 10
76
u
72
+ · · · + 1.46 × 10
74
b 3.86 ×
10
75
, 1.06 × 10
75
u
73
8.05 × 10
75
u
72
+ · · · + 7.32 × 10
73
a + 2.12 ×
10
75
, u
74
+ 9u
73
+ · · · + 25u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
14.4287u
73
+ 109.838u
72
+ ··· + 281.944u 28.9142
37.2429u
73
281.109u
72
+ ··· 661.514u + 26.3313
a
10
=
51.6717u
73
+ 390.947u
72
+ ··· + 943.457u 55.2455
37.2429u
73
281.109u
72
+ ··· 661.514u + 26.3313
a
12
=
33.4992u
73
+ 261.898u
72
+ ··· + 709.028u 16.0765
75.6177u
73
+ 583.270u
72
+ ··· + 1498.50u 58.5028
a
6
=
30.8792u
73
233.688u
72
+ ··· 554.094u + 16.6614
48.3000u
73
364.699u
72
+ ··· 849.392u + 33.2488
a
7
=
36.0803u
73
+ 270.250u
72
+ ··· + 606.729u 28.7422
25.1044u
73
186.311u
72
+ ··· 406.556u + 16.0348
a
11
=
32.0304u
73
+ 249.765u
72
+ ··· + 672.873u 12.6030
13.2898u
73
+ 102.925u
72
+ ··· + 269.186u 10.8565
a
8
=
85.5243u
73
+ 649.125u
72
+ ··· + 1574.12u 73.7687
13.2898u
73
102.925u
72
+ ··· 269.186u + 10.8565
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18.3007u
73
137.274u
72
+ ··· 108.453u 7.83721
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
u
74
9u
73
+ ··· 25u 1
c
3
, c
6
, c
9
c
12
u
74
+ 3u
73
+ ··· 384u 256
c
5
, c
11
(u
37
+ u
36
+ ··· 9u + 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
y
74
75y
73
+ ··· 675y + 1
c
3
, c
6
, c
9
c
12
y
74
51y
73
+ ··· 5160960y + 65536
c
5
, c
11
(y
37
+ 15y
36
+ ··· + 89y 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.987559
a = 5.10237
b = 0.617439
2.53018 0
u = 0.765958 + 0.687849I
a = 0.769554 + 0.568181I
b = 1.068030 + 0.296505I
2.53529 + 2.33569I 0
u = 0.765958 0.687849I
a = 0.769554 0.568181I
b = 1.068030 0.296505I
2.53529 2.33569I 0
u = 0.740221 + 0.600682I
a = 0.083801 + 0.201944I
b = 1.50913 + 0.29868I
10.44390 + 0.43302I 0
u = 0.740221 0.600682I
a = 0.083801 0.201944I
b = 1.50913 0.29868I
10.44390 0.43302I 0
u = 0.642782 + 0.680172I
a = 1.09156 1.09879I
b = 0.050970 + 1.083900I
4.74326 + 0.09745I 0
u = 0.642782 0.680172I
a = 1.09156 + 1.09879I
b = 0.050970 1.083900I
4.74326 0.09745I 0
u = 0.444752 + 0.973604I
a = 0.528031 0.978953I
b = 1.37729 + 0.67188I
7.6984 11.9811I 0
u = 0.444752 0.973604I
a = 0.528031 + 0.978953I
b = 1.37729 0.67188I
7.6984 + 11.9811I 0
u = 0.397060 + 0.840047I
a = 0.009139 + 1.344670I
b = 1.37372 0.48631I
9.28734 5.43922I 0
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.397060 0.840047I
a = 0.009139 1.344670I
b = 1.37372 + 0.48631I
9.28734 + 5.43922I 0
u = 0.458933 + 0.804344I
a = 0.234033 + 0.783748I
b = 0.264672 1.252910I
4.11115 5.12689I 0
u = 0.458933 0.804344I
a = 0.234033 0.783748I
b = 0.264672 + 1.252910I
4.11115 + 5.12689I 0
u = 1.009020 + 0.377651I
a = 1.061260 + 0.291632I
b = 0.416875 0.417140I
0.560067 0.765120I 0
u = 1.009020 0.377651I
a = 1.061260 0.291632I
b = 0.416875 + 0.417140I
0.560067 + 0.765120I 0
u = 0.062358 + 0.874395I
a = 0.364737 + 0.159007I
b = 0.962355 + 0.175040I
0.68340 3.31809I 0
u = 0.062358 0.874395I
a = 0.364737 0.159007I
b = 0.962355 0.175040I
0.68340 + 3.31809I 0
u = 0.454310 + 0.712668I
a = 0.801818 0.221496I
b = 1.187720 + 0.083087I
2.53529 2.33569I 0
u = 0.454310 0.712668I
a = 0.801818 + 0.221496I
b = 1.187720 0.083087I
2.53529 + 2.33569I 0
u = 0.844818 + 0.836713I
a = 0.304386 0.398418I
b = 1.35981 0.54134I
8.87079 + 5.90908I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.844818 0.836713I
a = 0.304386 + 0.398418I
b = 1.35981 + 0.54134I
8.87079 5.90908I 0
u = 0.231667 + 0.747835I
a = 0.012518 0.445587I
b = 0.193017 + 0.678428I
1.71361 3.34095I 7.14073 + 5.07807I
u = 0.231667 0.747835I
a = 0.012518 + 0.445587I
b = 0.193017 0.678428I
1.71361 + 3.34095I 7.14073 5.07807I
u = 0.719088
a = 2.14467
b = 1.58871
9.95403 72.0690
u = 1.265280 + 0.210357I
a = 0.126339 + 0.671818I
b = 0.200503 + 0.532779I
1.19152 1.56254I 0
u = 1.265280 0.210357I
a = 0.126339 0.671818I
b = 0.200503 0.532779I
1.19152 + 1.56254I 0
u = 1.306060 + 0.081958I
a = 0.837235 + 0.046967I
b = 0.818917 + 0.935827I
0.68340 + 3.31809I 0
u = 1.306060 0.081958I
a = 0.837235 0.046967I
b = 0.818917 0.935827I
0.68340 3.31809I 0
u = 0.595869 + 0.339811I
a = 1.37457 + 0.51483I
b = 1.135850 0.588468I
3.44427 + 7.05663I 11.58513 7.17023I
u = 0.595869 0.339811I
a = 1.37457 0.51483I
b = 1.135850 + 0.588468I
3.44427 7.05663I 11.58513 + 7.17023I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.364200 + 0.024112I
a = 2.71573 + 0.41433I
b = 1.128650 0.067233I
4.74326 0.09745I 0
u = 1.364200 0.024112I
a = 2.71573 0.41433I
b = 1.128650 + 0.067233I
4.74326 + 0.09745I 0
u = 1.366460 + 0.029279I
a = 1.223220 + 0.076417I
b = 1.033360 + 0.936789I
4.82697 + 1.65745I 0
u = 1.366460 0.029279I
a = 1.223220 0.076417I
b = 1.033360 0.936789I
4.82697 1.65745I 0
u = 1.290050 + 0.520157I
a = 0.614962 0.662756I
b = 1.088720 + 0.061864I
4.82697 1.65745I 0
u = 1.290050 0.520157I
a = 0.614962 + 0.662756I
b = 1.088720 0.061864I
4.82697 + 1.65745I 0
u = 1.40953 + 0.12805I
a = 2.21461 + 0.77406I
b = 1.45817 0.42165I
11.93780 3.04537I 0
u = 1.40953 0.12805I
a = 2.21461 0.77406I
b = 1.45817 + 0.42165I
11.93780 + 3.04537I 0
u = 1.38711 + 0.28497I
a = 0.264716 0.296527I
b = 0.011117 0.768662I
3.44427 + 7.05663I 0
u = 1.38711 0.28497I
a = 0.264716 + 0.296527I
b = 0.011117 + 0.768662I
3.44427 7.05663I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.43299 + 0.09516I
a = 0.1258650 0.0186642I
b = 0.305601 + 0.680349I
6.60087 + 1.06308I 0
u = 1.43299 0.09516I
a = 0.1258650 + 0.0186642I
b = 0.305601 0.680349I
6.60087 1.06308I 0
u = 1.44440 + 0.12650I
a = 2.42296 + 0.13068I
b = 1.172300 0.348245I
4.11115 5.12689I 0
u = 1.44440 0.12650I
a = 2.42296 0.13068I
b = 1.172300 + 0.348245I
4.11115 + 5.12689I 0
u = 0.530694
a = 10.8001
b = 0.156268
2.53018 192.020
u = 0.251570 + 0.421107I
a = 0.26379 2.00340I
b = 1.229010 + 0.199425I
6.60087 + 1.06308I 15.5655 0.4982I
u = 0.251570 0.421107I
a = 0.26379 + 2.00340I
b = 1.229010 0.199425I
6.60087 1.06308I 15.5655 + 0.4982I
u = 0.342720 + 0.342406I
a = 2.05882 0.92201I
b = 0.953270 + 0.548459I
1.71361 + 3.34095I 7.14073 5.07807I
u = 0.342720 0.342406I
a = 2.05882 + 0.92201I
b = 0.953270 0.548459I
1.71361 3.34095I 7.14073 + 5.07807I
u = 1.49740 + 0.26016I
a = 1.99549 + 0.47867I
b = 1.42581 0.12941I
8.87079 + 5.90908I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49740 0.26016I
a = 1.99549 0.47867I
b = 1.42581 + 0.12941I
8.87079 5.90908I 0
u = 1.50364 + 0.23324I
a = 1.62278 + 0.88393I
b = 1.170740 0.442254I
9.28734 + 5.43922I 0
u = 1.50364 0.23324I
a = 1.62278 0.88393I
b = 1.170740 + 0.442254I
9.28734 5.43922I 0
u = 1.51258 + 0.29195I
a = 0.276538 + 0.634948I
b = 0.32567 + 1.44514I
10.51240 + 9.13078I 0
u = 1.51258 0.29195I
a = 0.276538 0.634948I
b = 0.32567 1.44514I
10.51240 9.13078I 0
u = 1.53328 + 0.16361I
a = 1.83362 0.39801I
b = 1.80406 0.33054I
17.8245 + 2.1237I 0
u = 1.53328 0.16361I
a = 1.83362 + 0.39801I
b = 1.80406 + 0.33054I
17.8245 2.1237I 0
u = 1.50776 + 0.32383I
a = 1.92923 0.67310I
b = 1.36228 + 0.48402I
7.6984 + 11.9811I 0
u = 1.50776 0.32383I
a = 1.92923 + 0.67310I
b = 1.36228 0.48402I
7.6984 11.9811I 0
u = 1.53693 + 0.15527I
a = 2.05996 0.14354I
b = 1.38923 + 0.60719I
10.51240 9.13078I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.53693 0.15527I
a = 2.05996 + 0.14354I
b = 1.38923 0.60719I
10.51240 + 9.13078I 0
u = 1.54388 + 0.20125I
a = 0.376558 0.067493I
b = 0.268156 1.180450I
11.93780 + 3.04537I 0
u = 1.54388 0.20125I
a = 0.376558 + 0.067493I
b = 0.268156 + 1.180450I
11.93780 3.04537I 0
u = 1.56736 + 0.14197I
a = 1.80095 0.55160I
b = 1.068740 + 0.079519I
10.44390 + 0.43302I 0
u = 1.56736 0.14197I
a = 1.80095 + 0.55160I
b = 1.068740 0.079519I
10.44390 0.43302I 0
u = 0.401467
a = 1.57968
b = 0.195871
0.820249 11.7000
u = 1.60418
a = 2.26280
b = 0.589285
9.95403 0
u = 0.218129 + 0.234231I
a = 0.130714 + 1.149030I
b = 0.444722 + 0.888915I
1.19152 + 1.56254I 9.17228 1.36855I
u = 0.218129 0.234231I
a = 0.130714 1.149030I
b = 0.444722 0.888915I
1.19152 1.56254I 9.17228 + 1.36855I
u = 0.000170 + 0.316182I
a = 2.28289 + 2.44470I
b = 0.789115 0.457450I
0.560067 0.765120I 10.35165 + 1.08474I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.000170 0.316182I
a = 2.28289 2.44470I
b = 0.789115 + 0.457450I
0.560067 + 0.765120I 10.35165 1.08474I
u = 1.70709 + 0.15451I
a = 1.39938 + 0.39730I
b = 1.43731 + 0.34297I
17.8245 2.1237I 0
u = 1.70709 0.15451I
a = 1.39938 0.39730I
b = 1.43731 0.34297I
17.8245 + 2.1237I 0
u = 0.0384223
a = 17.9721
b = 0.580310
0.820249 11.7000
17
III. I
u
3
=
hb, 3u
7
+5u
6
7u
5
11u
4
+5u
3
+3u
2
+a+7, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
3u
7
5u
6
+ 7u
5
+ 11u
4
5u
3
3u
2
7
0
a
10
=
3u
7
5u
6
+ 7u
5
+ 11u
4
5u
3
3u
2
7
0
a
12
=
1
0
a
6
=
u
3
2u
u
3
+ u
a
7
=
u
6
+ 3u
4
2u
2
1
u
6
2u
4
+ u
2
a
11
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
8
=
3u
7
6u
6
+ 7u
5
+ 14u
4
5u
3
5u
2
8
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
7
+ 30u
6
48u
5
61u
4
+ 31u
3
+ 11u
2
+ 11u + 30
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
3
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
4
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
7
, c
8
(u 1)
8
c
9
, c
12
u
8
c
10
(u + 1)
8
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
3
, c
6
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
8
, c
10
(y 1)
8
c
9
, c
12
y
8
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.194470 + 0.635084I
b = 0
2.68559 1.13123I 14.0862 + 1.5750I
u = 1.180120 0.268597I
a = 1.194470 0.635084I
b = 0
2.68559 + 1.13123I 14.0862 1.5750I
u = 0.108090 + 0.747508I
a = 0.637416 + 0.344390I
b = 0
0.51448 2.57849I 10.94521 + 2.41352I
u = 0.108090 0.747508I
a = 0.637416 0.344390I
b = 0
0.51448 + 2.57849I 10.94521 2.41352I
u = 1.37100
a = 0.687555
b = 0
8.14766 19.2760
u = 1.334530 + 0.318930I
a = 0.286111 0.344558I
b = 0
4.02461 + 6.44354I 18.3815 0.5907I
u = 1.334530 0.318930I
a = 0.286111 + 0.344558I
b = 0
4.02461 6.44354I 18.3815 + 0.5907I
u = 0.463640
a = 7.54843
b = 0
2.48997 37.1020
21
IV. I
u
4
=
h−16a
7
+86b+· · ·+82a115, a
8
9a
6
5a
5
+18a
4
+9a
3
11a
2
5a+1, u1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
3
=
0
1
a
9
=
a
0.186047a
7
0.430233a
6
+ ··· 0.953488a + 1.33721
a
10
=
0.186047a
7
+ 0.430233a
6
+ ··· + 1.95349a 1.33721
0.186047a
7
0.430233a
6
+ ··· 0.953488a + 1.33721
a
12
=
0.430233a
7
0.151163a
6
+ ··· 2.26744a + 1.18605
1.20930a
7
0.546512a
6
+ ··· 7.69767a 0.0581395
a
6
=
0
1.65116a
7
0.755814a
6
+ ··· 12.8372a + 0.430233
a
7
=
0
1.65116a
7
0.755814a
6
+ ··· 12.8372a + 0.430233
a
11
=
0.430233a
7
0.151163a
6
+ ··· 2.26744a + 1.18605
0.918605a
7
0.0930233a
6
+ ··· 9.89535a 1.61628
a
8
=
0.395349a
7
0.476744a
6
+ ··· 2.65116a + 1.77907
0.918605a
7
0.0930233a
6
+ ··· 9.89535a 1.61628
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
86
a
7
+
6
43
a
6
+
41
43
a
5
27
43
a
4
57
86
a
3
+
265
43
a
2
+
223
86
a
1705
86
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
7
, c
8
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
9
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
12
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
8
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.043770 + 0.152194I
b = 0.855237 + 0.665892I
0.51448 2.57849I 10.94521 + 2.41352I
u = 1.00000
a = 1.043770 0.152194I
b = 0.855237 0.665892I
0.51448 + 2.57849I 10.94521 2.41352I
u = 1.00000
a = 0.759875 + 0.104398I
b = 1.031810 + 0.655470I
4.02461 + 6.44354I 18.3815 0.5907I
u = 1.00000
a = 0.759875 0.104398I
b = 1.031810 0.655470I
4.02461 6.44354I 18.3815 + 0.5907I
u = 1.00000
a = 1.80990 + 0.33963I
b = 0.570868 0.730671I
2.68559 + 1.13123I 14.0862 1.5750I
u = 1.00000
a = 1.80990 0.33963I
b = 0.570868 + 0.730671I
2.68559 1.13123I 14.0862 + 1.5750I
u = 1.00000
a = 0.155540
b = 1.09818
8.14766 19.2760
u = 1.00000
a = 2.89645
b = 0.603304
2.48997 37.1020
25
V. I
u
5
= hb + u, a + u, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u + 1
a
5
=
u
u + 1
a
3
=
u
u
a
9
=
u
u
a
10
=
0
u
a
12
=
u
u 1
a
6
=
u
u + 1
a
7
=
1
0
a
11
=
u
u 1
a
8
=
1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
6
, c
10
c
12
u
2
u 1
c
5
, c
11
u
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 0.618034
1.97392 20.0000
u = 1.61803
a = 1.61803
b = 1.61803
17.7653 20.0000
29
VI. I
u
6
= hb u 1, a + 2, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u + 1
a
5
=
u
u + 1
a
3
=
u
u
a
9
=
2
u + 1
a
10
=
u 3
u + 1
a
12
=
2u + 3
u 2
a
6
=
u
u + 1
a
7
=
1
0
a
11
=
2u + 3
u 2
a
8
=
3u + 3
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
6
, c
10
c
12
u
2
u 1
c
5
, c
11
u
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.00000
b = 1.61803
9.86960 25.0000
u = 1.61803
a = 2.00000
b = 0.618034
9.86960 25.0000
33
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(u 1)
8
(u
2
+ u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
18
3u
17
+ ··· 5u 1)(u
74
9u
73
+ ··· 25u 1)
c
3
, c
9
u
8
(u
2
+ u 1)
2
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
18
+ u
17
+ ··· 5u 1)(u
74
+ 3u
73
+ ··· 384u 256)
c
4
, c
10
(u + 1)
8
(u
2
u 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
18
3u
17
+ ··· 5u 1)(u
74
9u
73
+ ··· 25u 1)
c
5
, c
11
u
4
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
18
5u
17
+ ··· 8u + 4)(u
37
+ u
36
+ ··· 9u + 2)
2
c
6
, c
12
u
8
(u
2
u 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
18
+ u
17
+ ··· 5u 1)(u
74
+ 3u
73
+ ··· 384u 256)
34
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
(y 1)
8
(y
2
3y + 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
18
17y
17
+ ··· 19y + 1)(y
74
75y
73
+ ··· 675y + 1)
c
3
, c
6
, c
9
c
12
y
8
(y
2
3y + 1)
2
(y
8
3y
7
+ ··· 4y + 1)
· (y
18
9y
17
+ ··· 11y + 1)(y
74
51y
73
+ ··· 5160960y + 65536)
c
5
, c
11
y
4
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
· (y
18
+ 5y
17
+ ··· + 96y + 16)(y
37
+ 15y
36
+ ··· + 89y 4)
2
35