12a
0818
(K12a
0818
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 12 9 3 11 1 6 8 10
Solving Sequence
1,4
2 5
3,9
10 12 6 7 11 8
c
1
c
4
c
2
c
9
c
12
c
5
c
6
c
10
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h4.70557 × 10
47
u
41
+ 1.02379 × 10
48
u
40
+ ··· + 2.35995 × 10
48
b 1.46322 × 10
48
,
2.68217 × 10
48
u
41
8.92209 × 10
48
u
40
+ ··· + 6.29321 × 10
48
a 9.88859 × 10
49
,
u
42
+ 4u
41
+ ··· + 65u + 16i
I
u
2
= h431u
34
a 1267u
34
+ ··· + 287a 903, 3u
34
a + 24u
34
+ ··· + 3a + 14, u
35
+ 4u
34
+ ··· + 3u + 1i
I
u
3
= h16a
3
+ b + 3a 6, 4a
4
3a
3
+ a
2
2a + 1, u 1i
I
u
4
= hb 1, 2u
3
2u
2
+ 2a + 2u + 3, u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
5
= h−a
5
+ 2a
4
+ 8a
3
27a
2
+ 11b + 20a + 4, a
6
5a
5
+ 9a
4
4a
3
2a
2
+ a + 1, u 1i
* 5 irreducible components of dim
C
= 0, with total 127 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4.71 × 10
47
u
41
+ 1.02 × 10
48
u
40
+ · · · + 2.36 × 10
48
b 1.46 ×
10
48
, 2.68 × 10
48
u
41
8.92 × 10
48
u
40
+ · · · + 6.29 × 10
48
a 9.89 ×
10
49
, u
42
+ 4u
41
+ · · · + 65u + 16i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
0.426201u
41
+ 1.41773u
40
+ ··· + 26.1957u + 15.7131
0.199393u
41
0.433818u
40
+ ··· 8.03052u + 0.620022
a
10
=
0.226808u
41
+ 0.983916u
40
+ ··· + 18.1651u + 16.3331
0.199393u
41
0.433818u
40
+ ··· 8.03052u + 0.620022
a
12
=
0.130478u
41
0.589048u
40
+ ··· 7.93921u 10.8045
0.214517u
41
+ 0.476122u
40
+ ··· + 8.74596u 0.0471007
a
6
=
0.00615099u
41
+ 0.0315685u
40
+ ··· + 2.33674u + 0.767602
0.0725771u
41
+ 0.173370u
40
+ ··· + 2.50038u + 1.45174
a
7
=
0.213738u
41
0.514758u
40
+ ··· 2.95723u 3.48358
0.0448717u
41
0.0100936u
40
+ ··· 0.439227u 0.620256
a
11
=
0.382659u
41
+ 1.46025u
40
+ ··· + 24.9207u + 21.9393
0.0557291u
41
+ 0.360679u
40
+ ··· + 2.82601u + 7.24218
a
8
=
0.111846u
41
+ 0.317186u
40
+ ··· + 11.7593u + 0.621293
0.0138015u
41
0.0198181u
40
+ ··· 0.199133u 0.618692
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.14636u
41
+ 3.75809u
40
+ ··· + 70.7450u + 50.8762
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
42
4u
41
+ ··· 65u + 16
c
3
, c
7
u
42
+ 12u
40
+ ··· + 800u 256
c
5
, c
6
32(32u
42
80u
41
+ ··· 4u
2
+ 1)
c
8
, c
9
, c
11
c
12
u
42
5u
41
+ ··· 9u 1
c
10
u
42
+ 6u
41
+ ··· + 23552u + 4096
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
42
40y
41
+ ··· 2401y + 256
c
3
, c
7
y
42
+ 24y
41
+ ··· 54272y + 65536
c
5
, c
6
1024(1024y
42
12544y
41
+ ··· 8y + 1)
c
8
, c
9
, c
11
c
12
y
42
+ 21y
41
+ ··· 57y + 1
c
10
y
42
12y
41
+ ··· 370147328y + 16777216
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.382277 + 0.955337I
a = 1.66113 + 0.73518I
b = 0.53625 1.35310I
7.2700 13.9728I 5.21740 + 8.75518I
u = 0.382277 0.955337I
a = 1.66113 0.73518I
b = 0.53625 + 1.35310I
7.2700 + 13.9728I 5.21740 8.75518I
u = 1.036130 + 0.136384I
a = 0.31397 + 1.71197I
b = 0.698855 + 0.209140I
0.378272 0.672845I 8.32593 8.18018I
u = 1.036130 0.136384I
a = 0.31397 1.71197I
b = 0.698855 0.209140I
0.378272 + 0.672845I 8.32593 + 8.18018I
u = 0.176431 + 0.920219I
a = 0.089233 + 0.806500I
b = 0.260719 1.022000I
1.94168 4.58363I 2.67478 + 9.67087I
u = 0.176431 0.920219I
a = 0.089233 0.806500I
b = 0.260719 + 1.022000I
1.94168 + 4.58363I 2.67478 9.67087I
u = 1.16532
a = 0.690948
b = 0.111472
2.22469 4.45330
u = 0.906961 + 0.760300I
a = 0.164799 0.716064I
b = 0.451974 + 1.333990I
8.82177 + 8.14344I 7.68661 4.52240I
u = 0.906961 0.760300I
a = 0.164799 + 0.716064I
b = 0.451974 1.333990I
8.82177 8.14344I 7.68661 + 4.52240I
u = 1.201200 + 0.145400I
a = 0.872305 0.102731I
b = 0.574673 + 1.022490I
4.65035 + 8.25878I 8.8821 11.5403I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.201200 0.145400I
a = 0.872305 + 0.102731I
b = 0.574673 1.022490I
4.65035 8.25878I 8.8821 + 11.5403I
u = 0.518201 + 1.133520I
a = 0.589570 0.397152I
b = 0.152757 + 1.101360I
4.92726 4.44307I 10.0669 + 11.2674I
u = 0.518201 1.133520I
a = 0.589570 + 0.397152I
b = 0.152757 1.101360I
4.92726 + 4.44307I 10.0669 11.2674I
u = 0.391460 + 0.629294I
a = 2.37670 + 0.71559I
b = 1.257320 0.163098I
1.03974 1.89674I 9.71636 + 10.18048I
u = 0.391460 0.629294I
a = 2.37670 0.71559I
b = 1.257320 + 0.163098I
1.03974 + 1.89674I 9.71636 10.18048I
u = 1.28899
a = 0.386397
b = 1.24413
1.06374 15.9330
u = 0.520433 + 0.480903I
a = 1.54139 + 0.22846I
b = 0.486493 + 1.206120I
3.67601 + 8.64693I 1.18407 7.85838I
u = 0.520433 0.480903I
a = 1.54139 0.22846I
b = 0.486493 1.206120I
3.67601 8.64693I 1.18407 + 7.85838I
u = 1.369360 + 0.103398I
a = 1.140050 0.314674I
b = 1.010040 0.754348I
2.55620 + 3.08969I 0
u = 1.369360 0.103398I
a = 1.140050 + 0.314674I
b = 1.010040 + 0.754348I
2.55620 3.08969I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.381130 + 0.223245I
a = 0.587328 + 0.140475I
b = 0.398228 0.245218I
5.21752 + 3.92091I 0
u = 1.381130 0.223245I
a = 0.587328 0.140475I
b = 0.398228 + 0.245218I
5.21752 3.92091I 0
u = 1.46546 + 0.23954I
a = 0.778883 0.741783I
b = 1.44538 + 0.24251I
4.97209 + 5.11669I 0
u = 1.46546 0.23954I
a = 0.778883 + 0.741783I
b = 1.44538 0.24251I
4.97209 5.11669I 0
u = 1.22748 + 0.83655I
a = 0.546316 + 0.174607I
b = 0.091410 1.130240I
6.99380 2.96639I 0
u = 1.22748 0.83655I
a = 0.546316 0.174607I
b = 0.091410 + 1.130240I
6.99380 + 2.96639I 0
u = 0.208756 + 0.468070I
a = 1.034920 0.197444I
b = 0.106914 + 0.216906I
0.189441 1.194630I 3.03902 + 4.48079I
u = 0.208756 0.468070I
a = 1.034920 + 0.197444I
b = 0.106914 0.216906I
0.189441 + 1.194630I 3.03902 4.48079I
u = 1.49536 + 0.19812I
a = 1.070210 0.916497I
b = 0.49427 1.35780I
10.2159 11.2963I 0
u = 1.49536 0.19812I
a = 1.070210 + 0.916497I
b = 0.49427 + 1.35780I
10.2159 + 11.2963I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50308 + 0.37191I
a = 1.59621 + 0.46175I
b = 0.59118 + 1.39047I
13.3178 + 18.7741I 0
u = 1.50308 0.37191I
a = 1.59621 0.46175I
b = 0.59118 1.39047I
13.3178 18.7741I 0
u = 0.103524 + 0.426968I
a = 2.10169 1.36256I
b = 0.922128 + 0.404344I
2.10350 1.31837I 6.89891 1.71793I
u = 0.103524 0.426968I
a = 2.10169 + 1.36256I
b = 0.922128 0.404344I
2.10350 + 1.31837I 6.89891 + 1.71793I
u = 1.56428 + 0.38662I
a = 0.947107 0.401179I
b = 0.300179 1.217090I
11.6070 + 9.8095I 0
u = 1.56428 0.38662I
a = 0.947107 + 0.401179I
b = 0.300179 + 1.217090I
11.6070 9.8095I 0
u = 0.333406 + 0.020280I
a = 0.65169 + 1.58358I
b = 0.387814 + 0.633347I
0.54776 1.46692I 5.66103 + 4.76123I
u = 0.333406 0.020280I
a = 0.65169 1.58358I
b = 0.387814 0.633347I
0.54776 + 1.46692I 5.66103 4.76123I
u = 1.67473 + 0.04568I
a = 0.132515 0.361034I
b = 0.27984 1.41003I
18.2575 5.2882I 0
u = 1.67473 0.04568I
a = 0.132515 + 0.361034I
b = 0.27984 + 1.41003I
18.2575 + 5.2882I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.69220 + 0.30592I
a = 0.394986 + 0.353146I
b = 0.031137 + 1.135330I
8.08716 1.02616I 0
u = 1.69220 0.30592I
a = 0.394986 0.353146I
b = 0.031137 1.135330I
8.08716 + 1.02616I 0
9
II. I
u
2
= h431u
34
a 1267u
34
+ · · · + 287a 903, 3u
34
a + 24u
34
+ · · · + 3a +
14, u
35
+ 4u
34
+ · · · + 3u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
a
2.59639au
34
+ 7.63253u
34
+ ··· 1.72892a + 5.43976
a
10
=
2.59639au
34
+ 7.63253u
34
+ ··· 0.728916a + 5.43976
2.59639au
34
+ 7.63253u
34
+ ··· 1.72892a + 5.43976
a
12
=
6.19880au
34
4.53916u
34
+ ··· 3.90964a 4.43675
6.31627au
34
2.84639u
34
+ ··· 4.71988a 2.97892
a
6
=
6.56325au
34
15.4307u
34
+ ··· + 2.74398a 3.80422
0.0391566au
34
6.60241u
34
+ ··· + 0.0632530a 2.68072
a
7
=
7
2
u
34
17
2
u
33
+ ··· 9u
3
2
21
4
u
34
+
57
4
u
33
+ ··· + 9u +
19
4
a
11
=
7.63253au
34
+ 1.94277u
34
+ ··· + 5.43976a + 2.70783
1
a
8
=
7
2
u
34
+
19
2
u
33
+ ··· + 2u +
7
2
31
4
u
34
+
83
4
u
33
+ ··· + 12u +
25
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
34
+
55
2
u
33
+ ··· +
39
2
u +
13
2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
(u
35
4u
34
+ ··· + 3u 1)
2
c
3
, c
7
(u
35
u
34
+ ··· 28u 8)
2
c
5
, c
6
u
70
2u
69
+ ··· 215264236u + 17305121
c
8
, c
9
, c
11
c
12
u
70
+ 12u
69
+ ··· + 4u + 1
c
10
(u
35
2u
34
+ ··· 2u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
35
34y
34
+ ··· + 19y 1)
2
c
3
, c
7
(y
35
+ 21y
34
+ ··· + 16y 64)
2
c
5
, c
6
y
70
34y
69
+ ··· 9709459310743048y + 299467212824641
c
8
, c
9
, c
11
c
12
y
70
+ 46y
69
+ ··· + 60y
2
+ 1
c
10
(y
35
12y
34
+ ··· + 10y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.787288 + 0.599387I
a = 0.086494 + 0.987313I
b = 0.409191 1.343070I
4.38053 + 3.19486I 5.71319 2.77080I
u = 0.787288 + 0.599387I
a = 1.38411 1.00877I
b = 0.940264 + 0.111257I
4.38053 + 3.19486I 5.71319 2.77080I
u = 0.787288 0.599387I
a = 0.086494 0.987313I
b = 0.409191 + 1.343070I
4.38053 3.19486I 5.71319 + 2.77080I
u = 0.787288 0.599387I
a = 1.38411 + 1.00877I
b = 0.940264 0.111257I
4.38053 3.19486I 5.71319 + 2.77080I
u = 0.863463 + 0.435553I
a = 0.206812 0.579701I
b = 0.094077 + 1.102490I
3.64066 1.76625I 4.73044 + 2.55261I
u = 0.863463 + 0.435553I
a = 0.608026 + 1.260340I
b = 0.255940 0.178870I
3.64066 1.76625I 4.73044 + 2.55261I
u = 0.863463 0.435553I
a = 0.206812 + 0.579701I
b = 0.094077 1.102490I
3.64066 + 1.76625I 4.73044 2.55261I
u = 0.863463 0.435553I
a = 0.608026 1.260340I
b = 0.255940 + 0.178870I
3.64066 + 1.76625I 4.73044 2.55261I
u = 0.378284 + 0.838154I
a = 1.85036 0.34075I
b = 1.101690 + 0.020192I
3.07931 8.20034I 2.93623 + 7.67757I
u = 0.378284 + 0.838154I
a = 1.75417 0.92177I
b = 0.56291 + 1.37198I
3.07931 8.20034I 2.93623 + 7.67757I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.378284 0.838154I
a = 1.85036 + 0.34075I
b = 1.101690 0.020192I
3.07931 + 8.20034I 2.93623 7.67757I
u = 0.378284 0.838154I
a = 1.75417 + 0.92177I
b = 0.56291 1.37198I
3.07931 + 8.20034I 2.93623 7.67757I
u = 0.535823 + 0.722828I
a = 0.45702 1.35557I
b = 0.46606 + 1.42298I
7.75853 2.44036I 9.20394 + 3.90896I
u = 0.535823 + 0.722828I
a = 2.20201 + 0.82058I
b = 0.60727 1.30342I
7.75853 2.44036I 9.20394 + 3.90896I
u = 0.535823 0.722828I
a = 0.45702 + 1.35557I
b = 0.46606 1.42298I
7.75853 + 2.44036I 9.20394 3.90896I
u = 0.535823 0.722828I
a = 2.20201 0.82058I
b = 0.60727 + 1.30342I
7.75853 + 2.44036I 9.20394 3.90896I
u = 1.11802
a = 6.86583 + 4.96782I
b = 0.077086 1.008870I
5.44402 2.06430
u = 1.11802
a = 6.86583 4.96782I
b = 0.077086 + 1.008870I
5.44402 2.06430
u = 0.334838 + 0.781483I
a = 0.611108 0.709436I
b = 0.266376 + 0.028486I
2.04839 2.67684I 0.78426 + 2.93641I
u = 0.334838 + 0.781483I
a = 1.28426 + 0.62029I
b = 0.127641 1.040230I
2.04839 2.67684I 0.78426 + 2.93641I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.334838 0.781483I
a = 0.611108 + 0.709436I
b = 0.266376 0.028486I
2.04839 + 2.67684I 0.78426 2.93641I
u = 0.334838 0.781483I
a = 1.28426 0.62029I
b = 0.127641 + 1.040230I
2.04839 + 2.67684I 0.78426 2.93641I
u = 1.293330 + 0.022996I
a = 0.965695 0.118945I
b = 0.830183 0.558253I
3.19397 + 3.04539I 6.49856 3.07346I
u = 1.293330 + 0.022996I
a = 0.672369 + 0.296675I
b = 0.711919 0.891888I
3.19397 + 3.04539I 6.49856 3.07346I
u = 1.293330 0.022996I
a = 0.965695 + 0.118945I
b = 0.830183 + 0.558253I
3.19397 3.04539I 6.49856 + 3.07346I
u = 1.293330 0.022996I
a = 0.672369 0.296675I
b = 0.711919 + 0.891888I
3.19397 3.04539I 6.49856 + 3.07346I
u = 1.331630 + 0.151400I
a = 0.358567 0.966943I
b = 0.094807 + 0.186756I
4.74191 0.58793I 2.80279 + 0.I
u = 1.331630 + 0.151400I
a = 1.56667 1.15669I
b = 0.033995 1.083710I
4.74191 0.58793I 2.80279 + 0.I
u = 1.331630 0.151400I
a = 0.358567 + 0.966943I
b = 0.094807 0.186756I
4.74191 + 0.58793I 2.80279 + 0.I
u = 1.331630 0.151400I
a = 1.56667 + 1.15669I
b = 0.033995 + 1.083710I
4.74191 + 0.58793I 2.80279 + 0.I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.40486
a = 0.474895 + 1.101280I
b = 0.54790 + 1.37862I
9.85232 9.92120
u = 1.40486
a = 0.474895 1.101280I
b = 0.54790 1.37862I
9.85232 9.92120
u = 1.403830 + 0.145115I
a = 0.98126 + 1.19495I
b = 0.49226 + 1.38247I
5.78377 5.84473I 0
u = 1.403830 + 0.145115I
a = 0.252994 0.344206I
b = 1.053300 0.058898I
5.78377 5.84473I 0
u = 1.403830 0.145115I
a = 0.98126 1.19495I
b = 0.49226 1.38247I
5.78377 + 5.84473I 0
u = 1.403830 0.145115I
a = 0.252994 + 0.344206I
b = 1.053300 + 0.058898I
5.78377 + 5.84473I 0
u = 0.374463 + 0.419722I
a = 2.06448 + 2.38148I
b = 0.028461 + 1.098670I
3.71944 1.17044I 1.16678 + 5.64189I
u = 0.374463 + 0.419722I
a = 4.28644 + 4.59791I
b = 0.059654 0.866754I
3.71944 1.17044I 1.16678 + 5.64189I
u = 0.374463 0.419722I
a = 2.06448 2.38148I
b = 0.028461 1.098670I
3.71944 + 1.17044I 1.16678 5.64189I
u = 0.374463 0.419722I
a = 4.28644 4.59791I
b = 0.059654 + 0.866754I
3.71944 + 1.17044I 1.16678 5.64189I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.46236 + 0.17601I
a = 1.51571 0.46270I
b = 0.367348 + 0.819468I
9.77721 + 3.48149I 0
u = 1.46236 + 0.17601I
a = 0.43467 1.63292I
b = 0.091480 1.230270I
9.77721 + 3.48149I 0
u = 1.46236 0.17601I
a = 1.51571 + 0.46270I
b = 0.367348 0.819468I
9.77721 3.48149I 0
u = 1.46236 0.17601I
a = 0.43467 + 1.63292I
b = 0.091480 + 1.230270I
9.77721 3.48149I 0
u = 1.45963 + 0.29677I
a = 0.624599 + 0.193615I
b = 0.552157 0.070918I
7.83682 + 6.58963I 0
u = 1.45963 + 0.29677I
a = 1.35152 + 0.58488I
b = 0.249550 + 1.142520I
7.83682 + 6.58963I 0
u = 1.45963 0.29677I
a = 0.624599 0.193615I
b = 0.552157 + 0.070918I
7.83682 6.58963I 0
u = 1.45963 0.29677I
a = 1.35152 0.58488I
b = 0.249550 1.142520I
7.83682 6.58963I 0
u = 0.166758 + 0.470101I
a = 1.10634 1.04351I
b = 0.266545 + 0.867095I
0.05478 1.72545I 3.36392 + 2.52233I
u = 0.166758 + 0.470101I
a = 1.20153 + 0.96877I
b = 0.368166 + 0.304402I
0.05478 1.72545I 3.36392 + 2.52233I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.166758 0.470101I
a = 1.10634 + 1.04351I
b = 0.266545 0.867095I
0.05478 + 1.72545I 3.36392 2.52233I
u = 0.166758 0.470101I
a = 1.20153 0.96877I
b = 0.368166 0.304402I
0.05478 + 1.72545I 3.36392 2.52233I
u = 0.261262 + 0.408522I
a = 0.881409 + 0.809220I
b = 0.850553 0.149091I
0.43566 + 3.77887I 2.70186 3.89618I
u = 0.261262 + 0.408522I
a = 2.21730 0.24123I
b = 0.502121 1.163120I
0.43566 + 3.77887I 2.70186 3.89618I
u = 0.261262 0.408522I
a = 0.881409 0.809220I
b = 0.850553 + 0.149091I
0.43566 3.77887I 2.70186 + 3.89618I
u = 0.261262 0.408522I
a = 2.21730 + 0.24123I
b = 0.502121 + 1.163120I
0.43566 3.77887I 2.70186 + 3.89618I
u = 1.48269 + 0.31831I
a = 0.841244 + 0.661850I
b = 1.235650 0.053997I
9.0790 + 12.3988I 0
u = 1.48269 + 0.31831I
a = 1.53656 0.44667I
b = 0.65200 1.43728I
9.0790 + 12.3988I 0
u = 1.48269 0.31831I
a = 0.841244 0.661850I
b = 1.235650 + 0.053997I
9.0790 12.3988I 0
u = 1.48269 0.31831I
a = 1.53656 + 0.44667I
b = 0.65200 + 1.43728I
9.0790 12.3988I 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.52211 + 0.12323I
a = 0.684628 + 0.572571I
b = 1.063560 0.479442I
12.01000 1.04091I 0
u = 1.52211 + 0.12323I
a = 0.247279 + 0.320973I
b = 0.24344 + 1.56604I
12.01000 1.04091I 0
u = 1.52211 0.12323I
a = 0.684628 0.572571I
b = 1.063560 + 0.479442I
12.01000 + 1.04091I 0
u = 1.52211 0.12323I
a = 0.247279 0.320973I
b = 0.24344 1.56604I
12.01000 + 1.04091I 0
u = 1.51902 + 0.23855I
a = 1.50135 + 0.36894I
b = 0.78842 + 1.32634I
14.4705 + 5.9201I 0
u = 1.51902 + 0.23855I
a = 0.181610 + 0.009514I
b = 0.45096 1.59114I
14.4705 + 5.9201I 0
u = 1.51902 0.23855I
a = 1.50135 0.36894I
b = 0.78842 1.32634I
14.4705 5.9201I 0
u = 1.51902 0.23855I
a = 0.181610 0.009514I
b = 0.45096 + 1.59114I
14.4705 5.9201I 0
u = 0.207771
a = 0.50303 + 3.16268I
b = 0.346555 + 1.166320I
4.65443 2.49720
u = 0.207771
a = 0.50303 3.16268I
b = 0.346555 1.166320I
4.65443 2.49720
19
III. I
u
3
= h16a
3
+ b + 3a 6, 4a
4
3a
3
+ a
2
2a + 1, u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
3
=
0
1
a
9
=
a
16a
3
3a + 6
a
10
=
16a
3
2a + 6
16a
3
3a + 6
a
12
=
8a
3
2a
2
+ 2a 3
20a
3
3a
2
+ 4a 8
a
6
=
12a
3
a
2
+ 2a 5
36a
3
3a
2
+ 7a 13
a
7
=
0
32a
3
4a
2
+ 5a 12
a
11
=
8a
3
2a
2
+ 2a 3
24a
3
2a
2
+ 6a 8
a
8
=
0
32a
3
4a
2
+ 5a 12
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24a
3
+ 5a
2
9a + 7
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
u
4
2u
3
+ 3u
2
u + 1
c
8
, c
9
u
4
+ u
2
+ u + 1
c
10
u
4
3u
3
+ 4u
2
3u + 2
c
11
, c
12
u
4
+ u
2
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
8
, c
9
, c
11
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
10
y
4
y
3
+ 2y
2
+ 7y + 4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.286541 + 0.697356I
b = 0.547424 + 0.585652I
0.66484 + 1.39709I 1.91043 4.25783I
u = 1.00000
a = 0.286541 0.697356I
b = 0.547424 0.585652I
0.66484 1.39709I 1.91043 + 4.25783I
u = 1.00000
a = 0.661541 + 0.046758I
b = 0.547424 1.120870I
4.26996 + 7.64338I 3.62082 1.58240I
u = 1.00000
a = 0.661541 0.046758I
b = 0.547424 + 1.120870I
4.26996 7.64338I 3.62082 + 1.58240I
23
IV. I
u
4
= hb 1, 2u
3
2u
2
+ 2a + 2u + 3, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
3
+ u
2
u
3
2
1
a
10
=
u
3
+ u
2
u
1
2
1
a
12
=
u
3
+ u
2
u +
1
2
1
a
6
=
1
4
u
3
3
4
u
1
2
u
3
+
1
2
u
a
7
=
u
3
2u
u
3
+ u
a
11
=
u
3
+ u
2
u
1
2
1
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
4
u
4
+
15
4
u
3
17
4
u
2
+
1
2
u +
7
4
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
u
4
+ 2u
3
u
2
+ u 1
c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
32(32u
5
+ 48u
4
+ 32u
3
+ 4u
2
2u 1)
c
6
32(32u
5
48u
4
+ 32u
3
4u
2
2u + 1)
c
7
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
8
, c
9
(u + 1)
5
c
10
u
5
c
11
, c
12
(u 1)
5
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
, c
7
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
6
1024(1024y
5
256y
4
+ 512y
3
48y
2
+ 12y 1)
c
8
, c
9
, c
11
c
12
(y 1)
5
c
10
y
5
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.570903
b = 1.00000
0.756147 12.1740
u = 0.309916 + 0.549911I
a = 2.26766 0.21690I
b = 1.00000
1.31583 1.53058I 1.52646 1.80092I
u = 0.309916 0.549911I
a = 2.26766 + 0.21690I
b = 1.00000
1.31583 + 1.53058I 1.52646 + 1.80092I
u = 1.41878 + 0.21917I
a = 0.767792 + 0.471915I
b = 1.00000
4.22763 + 4.40083I 2.48831 2.71046I
u = 1.41878 0.21917I
a = 0.767792 0.471915I
b = 1.00000
4.22763 4.40083I 2.48831 + 2.71046I
27
V. I
u
5
=
h−a
5
+2a
4
+8a
3
27a
2
+11b+20a+4, a
6
5a
5
+9a
4
4a
3
2a
2
+a+1, u1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
3
=
0
1
a
9
=
a
0.0909091a
5
0.181818a
4
+ ··· 1.81818a 0.363636
a
10
=
0.0909091a
5
0.181818a
4
+ ··· 0.818182a 0.363636
0.0909091a
5
0.181818a
4
+ ··· 1.81818a 0.363636
a
12
=
0.363636a
5
+ 1.72727a
4
+ ··· + 0.272727a + 0.454545
0.636364a
5
+ 3.27273a
4
+ ··· + 0.727273a 0.454545
a
6
=
0.454545a
5
1.90909a
4
+ ··· 1.09091a 0.818182
0.181818a
5
+ 1.36364a
4
+ ··· 1.36364a 0.272727
a
7
=
0
0.272727a
5
0.545455a
4
+ ··· 1.45455a 1.09091
a
11
=
0.363636a
5
+ 1.72727a
4
+ ··· + 0.272727a + 0.454545
1
a
8
=
0
0.272727a
5
0.545455a
4
+ ··· 1.45455a 1.09091
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
11
a
5
+
2
11
a
4
+
30
11
a
3
93
11
a
2
+
31
11
a +
15
11
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
8
, c
9
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
10
(u
3
+ u
2
1)
2
c
11
, c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
8
, c
9
, c
11
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
10
(y
3
y
2
+ 2y 1)
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.836473 + 0.439023I
b = 0.713912 + 0.305839I
1.91067 + 2.82812I 0.28809 2.59975I
u = 1.00000
a = 0.836473 0.439023I
b = 0.713912 0.305839I
1.91067 2.82812I 0.28809 + 2.59975I
u = 1.00000
a = 0.376271 + 0.256441I
b = 0.498832 1.001300I
1.91067 2.82812I 0.28809 + 2.59975I
u = 1.00000
a = 0.376271 0.256441I
b = 0.498832 + 1.001300I
1.91067 + 2.82812I 0.28809 2.59975I
u = 1.00000
a = 2.03980 + 1.11514I
b = 0.284920 1.115140I
6.04826 12.42382 + 0.I
u = 1.00000
a = 2.03980 1.11514I
b = 0.284920 + 1.115140I
6.04826 12.42382 + 0.I
31
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
10
)(u
5
+ u
4
+ ··· + u 1)(u
35
4u
34
+ ··· + 3u 1)
2
· (u
42
4u
41
+ ··· 65u + 16)
c
3
u
10
(u
5
u
4
+ ··· + u 1)(u
35
u
34
+ ··· 28u 8)
2
· (u
42
+ 12u
40
+ ··· + 800u 256)
c
4
((u + 1)
10
)(u
5
u
4
+ ··· + u + 1)(u
35
4u
34
+ ··· + 3u 1)
2
· (u
42
4u
41
+ ··· 65u + 16)
c
5
1024(u
4
2u
3
+ 3u
2
u + 1)(32u
5
+ 48u
4
+ 32u
3
+ 4u
2
2u 1)
· (u
6
3u
5
+ 4u
4
2u
3
+ 1)(32u
42
80u
41
+ ··· 4u
2
+ 1)
· (u
70
2u
69
+ ··· 215264236u + 17305121)
c
6
1024(u
4
2u
3
+ 3u
2
u + 1)(32u
5
48u
4
+ 32u
3
4u
2
2u + 1)
· (u
6
3u
5
+ 4u
4
2u
3
+ 1)(32u
42
80u
41
+ ··· 4u
2
+ 1)
· (u
70
2u
69
+ ··· 215264236u + 17305121)
c
7
u
10
(u
5
+ u
4
+ ··· + u + 1)(u
35
u
34
+ ··· 28u 8)
2
· (u
42
+ 12u
40
+ ··· + 800u 256)
c
8
, c
9
(u + 1)
5
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
42
5u
41
+ ··· 9u 1)(u
70
+ 12u
69
+ ··· + 4u + 1)
c
10
u
5
(u
3
+ u
2
1)
2
(u
4
3u
3
+ ··· 3u + 2)(u
35
2u
34
+ ··· 2u + 1)
2
· (u
42
+ 6u
41
+ ··· + 23552u + 4096)
c
11
, c
12
(u 1)
5
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
42
5u
41
+ ··· 9u 1)(u
70
+ 12u
69
+ ··· + 4u + 1)
32
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
10
)(y
5
5y
4
+ ··· y 1)(y
35
34y
34
+ ··· + 19y 1)
2
· (y
42
40y
41
+ ··· 2401y + 256)
c
3
, c
7
y
10
(y
5
+ 3y
4
+ ··· y 1)(y
35
+ 21y
34
+ ··· + 16y 64)
2
· (y
42
+ 24y
41
+ ··· 54272y + 65536)
c
5
, c
6
1048576(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
· (1024y
5
256y
4
+ 512y
3
48y
2
+ 12y 1)
· (y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)(1024y
42
12544y
41
+ ··· 8y + 1)
· (y
70
34y
69
+ ··· 9709459310743048y + 299467212824641)
c
8
, c
9
, c
11
c
12
(y 1)
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
42
+ 21y
41
+ ··· 57y + 1)(y
70
+ 46y
69
+ ··· + 60y
2
+ 1)
c
10
y
5
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
35
12y
34
+ ··· + 10y 1)
2
· (y
42
12y
41
+ ··· 370147328y + 16777216)
33