10
77
(K10a
18
)
A knot diagram
1
Linearized knot diagam
4 8 5 2 10 1 9 3 7 6
Solving Sequence
1,7
6 10
3,5
4 9 8 2
c
6
c
10
c
5
c
3
c
9
c
7
c
2
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
22
u
21
+ ··· + b 1, u
22
9u
20
+ ··· + a 1, u
23
2u
22
+ ··· u + 1i
I
u
2
= hu
6
2u
4
+ u
2
+ b, u
4
u
2
+ a + 1, u
9
3u
7
u
6
+ 3u
5
+ 2u
4
+ u
3
u
2
2u 1i
I
u
3
= hb, a 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
22
u
21
+ · · · + b 1, u
22
9u
20
+ · · · + a 1, u
23
2u
22
+ · · · u + 1i
(i) Arc colorings
a
1
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
10
=
u
u
3
+ u
a
3
=
u
22
+ 9u
20
+ ··· + 5u + 1
u
22
+ u
21
+ ··· u + 1
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
22
u
21
+ ··· + 6u 1
u
19
+ 7u
17
+ ··· 6u
2
u
a
9
=
u
3
2u
u
3
+ u
a
8
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
2
=
u
21
+ 9u
19
+ ··· + 15u
2
+ 6u
u
22
+ u
21
+ ··· u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
21
+ 4u
20
+ 18u
19
32u
18
70u
17
+ 100u
16
+ 148u
15
132u
14
164u
13
4u
12
+
38u
11
+ 200u
10
+ 130u
9
148u
8
136u
7
68u
6
+ 2u
5
+ 80u
4
+ 50u
3
+ 20u
2
6u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
23
2u
22
+ ··· + 3u 1
c
2
, c
8
u
23
2u
22
+ ··· + 2u 2
c
3
u
23
+ 12u
22
+ ··· + 7u + 1
c
5
, c
6
, c
10
u
23
+ 2u
22
+ ··· u 1
c
7
, c
9
u
23
6u
22
+ ··· + 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
23
12y
22
+ ··· + 7y 1
c
2
, c
8
y
23
6y
22
+ ··· + 8y 4
c
3
y
23
+ 32y
21
+ ··· + 31y 1
c
5
, c
6
, c
10
y
23
20y
22
+ ··· 9y 1
c
7
, c
9
y
23
+ 18y
22
+ ··· 8y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.094963 + 0.875706I
a = 2.34528 + 0.84882I
b = 1.86529 0.93050I
6.35503 7.52364I 0.34364 + 6.02284I
u = 0.094963 0.875706I
a = 2.34528 0.84882I
b = 1.86529 + 0.93050I
6.35503 + 7.52364I 0.34364 6.02284I
u = 0.019170 + 0.819470I
a = 2.62421 0.25037I
b = 2.01346 0.21505I
6.84422 + 1.43226I 1.58922 0.72835I
u = 0.019170 0.819470I
a = 2.62421 + 0.25037I
b = 2.01346 + 0.21505I
6.84422 1.43226I 1.58922 + 0.72835I
u = 1.204480 + 0.336653I
a = 0.431013 0.938359I
b = 1.64316 0.13209I
0.429871 1.292380I 5.93678 + 0.45977I
u = 1.204480 0.336653I
a = 0.431013 + 0.938359I
b = 1.64316 + 0.13209I
0.429871 + 1.292380I 5.93678 0.45977I
u = 1.261470 + 0.073530I
a = 0.222367 + 0.062621I
b = 0.51599 1.45099I
2.49785 1.83570I 6.37573 + 3.60335I
u = 1.261470 0.073530I
a = 0.222367 0.062621I
b = 0.51599 + 1.45099I
2.49785 + 1.83570I 6.37573 3.60335I
u = 0.698406
a = 0.537824
b = 0.384144
1.01631 10.3720
u = 0.380828 + 0.580276I
a = 0.191263 0.218661I
b = 0.411893 + 0.381927I
0.26922 3.59706I 4.75645 + 7.79597I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.380828 0.580276I
a = 0.191263 + 0.218661I
b = 0.411893 0.381927I
0.26922 + 3.59706I 4.75645 7.79597I
u = 1.283800 + 0.366192I
a = 0.89429 + 1.11514I
b = 2.28606 + 0.18751I
2.78844 5.69706I 2.62032 + 4.06061I
u = 1.283800 0.366192I
a = 0.89429 1.11514I
b = 2.28606 0.18751I
2.78844 + 5.69706I 2.62032 4.06061I
u = 1.318900 + 0.354954I
a = 0.95360 + 1.10438I
b = 1.57753 + 1.07523I
1.33811 + 7.00485I 7.04339 5.13787I
u = 1.318900 0.354954I
a = 0.95360 1.10438I
b = 1.57753 1.07523I
1.33811 7.00485I 7.04339 + 5.13787I
u = 1.369190 + 0.083411I
a = 0.752735 0.144610I
b = 0.117460 0.451573I
6.97398 + 1.20490I 11.80214 0.58796I
u = 1.369190 0.083411I
a = 0.752735 + 0.144610I
b = 0.117460 + 0.451573I
6.97398 1.20490I 11.80214 + 0.58796I
u = 1.377900 + 0.168105I
a = 0.363007 + 0.227729I
b = 0.140468 + 0.918165I
5.85182 + 6.12354I 9.22962 6.59776I
u = 1.377900 0.168105I
a = 0.363007 0.227729I
b = 0.140468 0.918165I
5.85182 6.12354I 9.22962 + 6.59776I
u = 1.339590 + 0.393018I
a = 1.38895 1.04382I
b = 1.90675 1.28425I
1.85559 + 12.07470I 3.82521 8.06520I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.339590 0.393018I
a = 1.38895 + 1.04382I
b = 1.90675 + 1.28425I
1.85559 12.07470I 3.82521 + 8.06520I
u = 0.149995 + 0.273260I
a = 0.10530 + 2.51199I
b = 0.460745 0.520456I
1.67067 + 0.60932I 3.84266 0.84402I
u = 0.149995 0.273260I
a = 0.10530 2.51199I
b = 0.460745 + 0.520456I
1.67067 0.60932I 3.84266 + 0.84402I
7
II.
I
u
2
= hu
6
2u
4
+u
2
+b, u
4
u
2
+a+1, u
9
3u
7
u
6
+3u
5
+2u
4
+u
3
u
2
2u1i
(i) Arc colorings
a
1
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
10
=
u
u
3
+ u
a
3
=
u
4
+ u
2
1
u
6
+ 2u
4
u
2
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
1
u
2
a
9
=
u
3
2u
u
3
+ u
a
8
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
2
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
8u
4
4u
3
+ 4u
2
+ 4u + 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
10
u
9
3u
7
+ u
6
+ 3u
5
2u
4
+ u
3
+ u
2
2u + 1
c
2
, c
8
(u
3
+ u
2
1)
3
c
3
u
9
+ 6u
8
+ 15u
7
+ 17u
6
+ 3u
5
12u
4
9u
3
+ u
2
+ 2u + 1
c
7
, c
9
(u
3
u
2
+ 2u 1)
3
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
10
y
9
6y
8
+ 15y
7
17y
6
+ 3y
5
+ 12y
4
9y
3
y
2
+ 2y 1
c
2
, c
8
(y
3
y
2
+ 2y 1)
3
c
3
y
9
6y
8
+ 27y
7
73y
6
+ 139y
5
184y
4
+ 83y
3
13y
2
+ 2y 1
c
7
, c
9
(y
3
+ 3y
2
+ 2y 1)
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.073457 + 0.802780I
a = 2.03355 0.26868I
b = 1.66236 + 0.56228I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.073457 0.802780I
a = 2.03355 + 0.26868I
b = 1.66236 0.56228I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.21243
a = 1.69089
b = 0.324718
1.11345 9.01950
u = 1.180080 + 0.437737I
a = 0.17400 + 1.44838I
b = 1.66236 0.56228I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.180080 0.437737I
a = 0.17400 1.44838I
b = 1.66236 + 0.56228I
3.02413 2.82812I 2.49024 + 2.97945I
u = 1.253530 + 0.365043I
a = 0.79245 1.71706I
b = 1.66236 0.56228I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.253530 0.365043I
a = 0.79245 + 1.71706I
b = 1.66236 + 0.56228I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.606217 + 0.320153I
a = 0.654553 0.182436I
b = 0.324718
1.11345 9.01951 + 0.I
u = 0.606217 0.320153I
a = 0.654553 + 0.182436I
b = 0.324718
1.11345 9.01951 + 0.I
11
III. I
u
3
= hb, a 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
7
=
1
0
a
6
=
1
1
a
10
=
1
0
a
3
=
1
0
a
5
=
0
1
a
4
=
1
1
a
9
=
1
0
a
8
=
1
0
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
u 1
c
2
, c
7
, c
8
c
9
u
c
4
, c
5
, c
6
u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
10
y 1
c
2
, c
7
, c
8
c
9
y
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
0 0
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
9
3u
7
+ u
6
+ 3u
5
2u
4
+ u
3
+ u
2
2u + 1)
· (u
23
2u
22
+ ··· + 3u 1)
c
2
, c
8
u(u
3
+ u
2
1)
3
(u
23
2u
22
+ ··· + 2u 2)
c
3
(u 1)(u
9
+ 6u
8
+ 15u
7
+ 17u
6
+ 3u
5
12u
4
9u
3
+ u
2
+ 2u + 1)
· (u
23
+ 12u
22
+ ··· + 7u + 1)
c
4
(u + 1)(u
9
3u
7
+ u
6
+ 3u
5
2u
4
+ u
3
+ u
2
2u + 1)
· (u
23
2u
22
+ ··· + 3u 1)
c
5
, c
6
(u + 1)(u
9
3u
7
+ u
6
+ 3u
5
2u
4
+ u
3
+ u
2
2u + 1)
· (u
23
+ 2u
22
+ ··· u 1)
c
7
, c
9
u(u
3
u
2
+ 2u 1)
3
(u
23
6u
22
+ ··· + 8u 4)
c
10
(u 1)(u
9
3u
7
+ u
6
+ 3u
5
2u
4
+ u
3
+ u
2
2u + 1)
· (u
23
+ 2u
22
+ ··· u 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)(y
9
6y
8
+ 15y
7
17y
6
+ 3y
5
+ 12y
4
9y
3
y
2
+ 2y 1)
· (y
23
12y
22
+ ··· + 7y 1)
c
2
, c
8
y(y
3
y
2
+ 2y 1)
3
(y
23
6y
22
+ ··· + 8y 4)
c
3
(y 1)
· (y
9
6y
8
+ 27y
7
73y
6
+ 139y
5
184y
4
+ 83y
3
13y
2
+ 2y 1)
· (y
23
+ 32y
21
+ ··· + 31y 1)
c
5
, c
6
, c
10
(y 1)(y
9
6y
8
+ 15y
7
17y
6
+ 3y
5
+ 12y
4
9y
3
y
2
+ 2y 1)
· (y
23
20y
22
+ ··· 9y 1)
c
7
, c
9
y(y
3
+ 3y
2
+ 2y 1)
3
(y
23
+ 18y
22
+ ··· 8y 16)
17