12a
0824
(K12a
0824
)
A knot diagram
1
Linearized knot diagam
4 5 8 2 10 11 3 12 1 6 7 9
Solving Sequence
5,10
6 11
3,7
8 12 2 4 1 9
c
5
c
10
c
6
c
7
c
11
c
2
c
4
c
1
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.98047 × 10
56
u
61
7.28716 × 10
56
u
60
+ ··· + 2.15534 × 10
55
b 3.50669 × 10
57
,
3.70578 × 10
56
u
61
+ 9.04815 × 10
56
u
60
+ ··· + 2.15534 × 10
55
a + 4.10393 × 10
57
,
u
62
2u
61
+ ··· 12u 4i
I
u
2
= hb + 1, u
2
+ a + u 2, u
3
+ u
2
2u 1i
I
u
3
= hau + b + 2a 1, 2a
2
+ au 2a + 2u 3, u
2
2i
I
v
1
= ha, b + v 2, v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.98 × 10
56
u
61
7.29 × 10
56
u
60
+ · · · + 2.16 × 10
55
b 3.51 ×
10
57
, 3.71 × 10
56
u
61
+ 9.05 × 10
56
u
60
+ · · · + 2.16 × 10
55
a + 4.10 ×
10
57
, u
62
2u
61
+ · · · 12u 4i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
17.1935u
61
41.9802u
60
+ ··· 59.0803u 190.408
13.8283u
61
+ 33.8098u
60
+ ··· + 35.7338u + 162.698
a
7
=
u
2
+ 1
u
4
2u
2
a
8
=
1.21636u
61
2.59080u
60
+ ··· 18.6035u 0.834246
22.4729u
61
+ 50.9927u
60
+ ··· + 34.3595u + 239.437
a
12
=
u
3
+ 2u
u
5
3u
3
+ u
a
2
=
3.36518u
61
8.17039u
60
+ ··· 23.3465u 27.7096
13.8283u
61
+ 33.8098u
60
+ ··· + 35.7338u + 162.698
a
4
=
38.7754u
61
92.5739u
60
+ ··· 86.8745u 442.022
17.6227u
61
43.4791u
60
+ ··· 45.7098u 215.395
a
1
=
39.6334u
61
94.3136u
60
+ ··· 95.8498u 449.301
17.1297u
61
42.0208u
60
+ ··· 39.9181u 209.663
a
9
=
8.92692u
61
+ 20.4057u
60
+ ··· 0.725611u + 105.357
26.0460u
61
+ 58.7518u
60
+ ··· + 38.2629u + 274.601
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.64973u
61
+ 4.67865u
60
+ ··· 82.0084u + 32.7971
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
62
7u
61
+ ··· + 29u + 1
c
3
, c
7
u
62
2u
61
+ ··· + 108u 8
c
5
, c
6
, c
10
c
11
u
62
+ 2u
61
+ ··· + 12u 4
c
8
, c
9
, c
12
u
62
4u
61
+ ··· + 81u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
62
57y
61
+ ··· 427y + 1
c
3
, c
7
y
62
30y
61
+ ··· 4688y + 64
c
5
, c
6
, c
10
c
11
y
62
74y
61
+ ··· 624y + 16
c
8
, c
9
, c
12
y
62
60y
61
+ ··· 3519y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.728927 + 0.693480I
a = 0.50031 1.40841I
b = 1.41056 + 0.37112I
0.16183 11.03280I 0
u = 0.728927 0.693480I
a = 0.50031 + 1.40841I
b = 1.41056 0.37112I
0.16183 + 11.03280I 0
u = 0.979023 + 0.319186I
a = 0.687788 + 0.612198I
b = 0.174252 0.593165I
6.85692 + 1.08905I 0
u = 0.979023 0.319186I
a = 0.687788 0.612198I
b = 0.174252 + 0.593165I
6.85692 1.08905I 0
u = 0.869463 + 0.382228I
a = 0.78515 1.20030I
b = 1.394320 + 0.085865I
4.30575 1.13280I 0
u = 0.869463 0.382228I
a = 0.78515 + 1.20030I
b = 1.394320 0.085865I
4.30575 + 1.13280I 0
u = 0.744058 + 0.573909I
a = 0.05054 + 1.60912I
b = 1.41065 0.23730I
5.93385 + 6.46887I 0. 6.93804I
u = 0.744058 0.573909I
a = 0.05054 1.60912I
b = 1.41065 + 0.23730I
5.93385 6.46887I 0. + 6.93804I
u = 0.757731 + 0.545713I
a = 0.418942 + 0.852081I
b = 0.234673 0.886336I
5.04847 6.51467I 0. + 6.90536I
u = 0.757731 0.545713I
a = 0.418942 0.852081I
b = 0.234673 + 0.886336I
5.04847 + 6.51467I 0. 6.90536I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.294207 + 0.839087I
a = 0.678495 0.208859I
b = 1.351380 0.291230I
1.47807 + 5.97196I 0.82075 3.88105I
u = 0.294207 0.839087I
a = 0.678495 + 0.208859I
b = 1.351380 + 0.291230I
1.47807 5.97196I 0.82075 + 3.88105I
u = 0.700864 + 0.454130I
a = 1.08574 1.35076I
b = 1.381210 + 0.269324I
1.85807 + 4.31924I 4.65831 4.87668I
u = 0.700864 0.454130I
a = 1.08574 + 1.35076I
b = 1.381210 0.269324I
1.85807 4.31924I 4.65831 + 4.87668I
u = 0.720139 + 0.323549I
a = 0.041734 0.370738I
b = 0.990063 + 0.574650I
2.74398 1.42912I 4.95658 + 3.06315I
u = 0.720139 0.323549I
a = 0.041734 + 0.370738I
b = 0.990063 0.574650I
2.74398 + 1.42912I 4.95658 3.06315I
u = 0.612514 + 0.397650I
a = 0.270980 1.353370I
b = 0.326776 + 0.647435I
0.38950 + 3.27691I 2.40587 8.31237I
u = 0.612514 0.397650I
a = 0.270980 + 1.353370I
b = 0.326776 0.647435I
0.38950 3.27691I 2.40587 + 8.31237I
u = 0.154333 + 0.690721I
a = 0.498196 + 0.076734I
b = 0.141589 + 0.700436I
3.24167 + 2.36306I 4.92638 2.57172I
u = 0.154333 0.690721I
a = 0.498196 0.076734I
b = 0.141589 0.700436I
3.24167 2.36306I 4.92638 + 2.57172I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.168802 + 0.683958I
a = 0.772109 + 0.104136I
b = 1.43972 + 0.11421I
7.63058 2.23574I 4.95663 + 1.98264I
u = 0.168802 0.683958I
a = 0.772109 0.104136I
b = 1.43972 0.11421I
7.63058 + 2.23574I 4.95663 1.98264I
u = 1.35461
a = 0.662234
b = 1.56599
3.74962 0
u = 0.472149 + 0.408625I
a = 1.37617 + 1.82546I
b = 1.274780 0.089703I
2.79224 1.47778I 0.57816 + 4.38549I
u = 0.472149 0.408625I
a = 1.37617 1.82546I
b = 1.274780 + 0.089703I
2.79224 + 1.47778I 0.57816 4.38549I
u = 1.37684
a = 0.886850
b = 0.0476686
6.50761 0
u = 1.315790 + 0.425847I
a = 0.397092 + 0.322882I
b = 1.255370 + 0.180857I
3.54224 1.50691I 0
u = 1.315790 0.425847I
a = 0.397092 0.322882I
b = 1.255370 0.180857I
3.54224 + 1.50691I 0
u = 1.43056
a = 8.65850
b = 0.979198
4.96917 0
u = 0.150519 + 0.505903I
a = 3.05850 1.07646I
b = 1.166570 0.207757I
0.273379 0.971704I 0.08959 3.04439I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.150519 0.505903I
a = 3.05850 + 1.07646I
b = 1.166570 + 0.207757I
0.273379 + 0.971704I 0.08959 + 3.04439I
u = 0.523123 + 0.028134I
a = 1.13938 0.89193I
b = 0.084530 + 0.244571I
0.906568 0.098785I 10.73700 + 0.03939I
u = 0.523123 0.028134I
a = 1.13938 + 0.89193I
b = 0.084530 0.244571I
0.906568 + 0.098785I 10.73700 0.03939I
u = 1.51079 + 0.03677I
a = 1.03861 1.20593I
b = 0.962369 + 0.432397I
4.73047 0.55582I 0
u = 1.51079 0.03677I
a = 1.03861 + 1.20593I
b = 0.962369 0.432397I
4.73047 + 0.55582I 0
u = 0.280851 + 0.380725I
a = 0.583491 + 0.202281I
b = 0.543197 0.407436I
1.335370 0.411278I 3.93368 + 0.07785I
u = 0.280851 0.380725I
a = 0.583491 0.202281I
b = 0.543197 + 0.407436I
1.335370 + 0.411278I 3.93368 0.07785I
u = 1.53718 + 0.08815I
a = 0.26347 1.53965I
b = 1.318230 + 0.251318I
3.97848 + 3.12179I 0
u = 1.53718 0.08815I
a = 0.26347 + 1.53965I
b = 1.318230 0.251318I
3.97848 3.12179I 0
u = 1.54676
a = 0.552532
b = 1.77372
0.257952 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58047 + 0.01988I
a = 0.307453 1.365900I
b = 0.028298 + 0.630886I
8.23798 + 0.05802I 0
u = 1.58047 0.01988I
a = 0.307453 + 1.365900I
b = 0.028298 0.630886I
8.23798 0.05802I 0
u = 1.58423 + 0.10551I
a = 0.00098 + 1.59403I
b = 0.206251 0.827340I
7.10069 5.07913I 0
u = 1.58423 0.10551I
a = 0.00098 1.59403I
b = 0.206251 + 0.827340I
7.10069 + 5.07913I 0
u = 1.60674 + 0.13048I
a = 0.203247 + 1.201000I
b = 1.51444 0.32292I
9.71439 6.49643I 0
u = 1.60674 0.13048I
a = 0.203247 1.201000I
b = 1.51444 + 0.32292I
9.71439 + 6.49643I 0
u = 1.61104 + 0.09528I
a = 0.709620 + 0.974902I
b = 1.082630 0.771501I
10.73290 + 3.02061I 0
u = 1.61104 0.09528I
a = 0.709620 0.974902I
b = 1.082630 + 0.771501I
10.73290 3.02061I 0
u = 1.61936 + 0.17707I
a = 0.71301 1.47528I
b = 1.38942 + 0.34866I
2.05187 9.32176I 0
u = 1.61936 0.17707I
a = 0.71301 + 1.47528I
b = 1.38942 0.34866I
2.05187 + 9.32176I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62558 + 0.16107I
a = 0.18148 1.48352I
b = 0.265871 + 1.040180I
13.1382 + 9.1870I 0
u = 1.62558 0.16107I
a = 0.18148 + 1.48352I
b = 0.265871 1.040180I
13.1382 9.1870I 0
u = 1.61953 + 0.21948I
a = 0.42080 + 1.54749I
b = 1.45736 0.44242I
7.6958 + 14.4824I 0
u = 1.61953 0.21948I
a = 0.42080 1.54749I
b = 1.45736 + 0.44242I
7.6958 14.4824I 0
u = 0.363008
a = 3.16745
b = 0.297973
0.945431 16.1240
u = 0.353073
a = 1.07459
b = 1.65773
6.97573 16.8660
u = 1.65034 + 0.12971I
a = 0.97563 + 1.03708I
b = 1.278460 0.240889I
4.33770 + 3.20222I 0
u = 1.65034 0.12971I
a = 0.97563 1.03708I
b = 1.278460 + 0.240889I
4.33770 3.20222I 0
u = 1.67507 + 0.05882I
a = 0.039583 1.084640I
b = 0.468851 + 0.766491I
16.0964 2.4237I 0
u = 1.67507 0.05882I
a = 0.039583 + 1.084640I
b = 0.468851 0.766491I
16.0964 + 2.4237I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.284099
a = 2.60629
b = 0.896150
1.25065 13.1380
u = 1.82703
a = 0.674961
b = 1.09260
15.7512 0
11
II. I
u
2
= hb + 1, u
2
+ a + u 2, u
3
+ u
2
2u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
2
u 1
a
3
=
u
2
u + 2
1
a
7
=
u
2
+ 1
u
2
u 1
a
8
=
u
2
+ 1
u
2
u 1
a
12
=
u
2
1
u
2
a
2
=
u
2
u + 1
1
a
4
=
u
2
u + 2
1
a
1
=
1
0
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
4u + 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
8
c
9
u
3
+ u
2
2u 1
c
10
, c
11
, c
12
u
3
u
2
2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
8
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24698
a = 0.801938
b = 1.00000
4.69981 8.56700
u = 0.445042
a = 2.24698
b = 1.00000
0.939962 13.9780
u = 1.80194
a = 0.554958
b = 1.00000
15.9794 22.4550
15
III. I
u
3
= hau + b + 2a 1, 2a
2
+ au 2a + 2u 3, u
2
2i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
2
a
11
=
u
u
a
3
=
a
au 2a + 1
a
7
=
1
0
a
8
=
1
2
u
au + 2a 2
a
12
=
0
u
a
2
=
au a + 1
au 2a + 1
a
4
=
au + 2a
1
2
u
au + 2a 2
a
1
=
1
2
u
au + 2a 2
a
9
=
1
2
u
au + 2a + u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u
2
+ u 1)
2
c
3
, c
4
(u
2
u 1)
2
c
5
, c
6
, c
10
c
11
(u
2
2)
2
c
8
, c
9
(u 1)
4
c
12
(u + 1)
4
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
(y
2
3y + 1)
2
c
5
, c
6
, c
10
c
11
(y 2)
4
c
8
, c
9
, c
12
(y 1)
4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.473911
b = 0.618034
5.59278 4.00000
u = 1.41421
a = 0.181018
b = 1.61803
2.30291 4.00000
u = 1.41421
a = 1.05505
b = 1.61803
2.30291 4.00000
u = 1.41421
a = 2.76216
b = 0.618034
5.59278 4.00000
19
IV. I
v
1
= ha, b + v 2, v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
6
=
1
0
a
11
=
v
0
a
3
=
0
v + 2
a
7
=
1
0
a
8
=
1
v + 3
a
12
=
v
0
a
2
=
v + 2
v + 2
a
4
=
v 2
v 3
a
1
=
1
v 3
a
9
=
v + 1
v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
u
2
+ u 1
c
4
, c
7
u
2
u 1
c
5
, c
6
, c
10
c
11
u
2
c
8
, c
9
(u + 1)
2
c
12
(u 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
y
2
3y + 1
c
5
, c
6
, c
10
c
11
y
2
c
8
, c
9
, c
12
(y 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
7.23771 14.0000
v = 2.61803
a = 0
b = 0.618034
0.657974 14.0000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
3
)(u
2
+ u 1)
3
(u
62
7u
61
+ ··· + 29u + 1)
c
3
u
3
(u
2
u 1)
2
(u
2
+ u 1)(u
62
2u
61
+ ··· + 108u 8)
c
4
((u + 1)
3
)(u
2
u 1)
3
(u
62
7u
61
+ ··· + 29u + 1)
c
5
, c
6
u
2
(u
2
2)
2
(u
3
+ u
2
2u 1)(u
62
+ 2u
61
+ ··· + 12u 4)
c
7
u
3
(u
2
u 1)(u
2
+ u 1)
2
(u
62
2u
61
+ ··· + 108u 8)
c
8
, c
9
((u 1)
4
)(u + 1)
2
(u
3
+ u
2
2u 1)(u
62
4u
61
+ ··· + 81u 9)
c
10
, c
11
u
2
(u
2
2)
2
(u
3
u
2
2u + 1)(u
62
+ 2u
61
+ ··· + 12u 4)
c
12
((u 1)
2
)(u + 1)
4
(u
3
u
2
2u + 1)(u
62
4u
61
+ ··· + 81u 9)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
3
)(y
2
3y + 1)
3
(y
62
57y
61
+ ··· 427y + 1)
c
3
, c
7
y
3
(y
2
3y + 1)
3
(y
62
30y
61
+ ··· 4688y + 64)
c
5
, c
6
, c
10
c
11
y
2
(y 2)
4
(y
3
5y
2
+ 6y 1)(y
62
74y
61
+ ··· 624y + 16)
c
8
, c
9
, c
12
((y 1)
6
)(y
3
5y
2
+ 6y 1)(y
62
60y
61
+ ··· 3519y + 81)
25