12a
0828
(K12a
0828
)
A knot diagram
1
Linearized knot diagam
4 5 8 2 10 12 3 11 6 1 7 9
Solving Sequence
3,7
8
4,11
9 12 1 6 10 5 2
c
7
c
3
c
8
c
11
c
12
c
6
c
9
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.48295 × 10
68
u
41
+ 7.81857 × 10
68
u
40
+ ··· + 7.16827 × 10
67
b 2.61630 × 10
70
,
1.00081 × 10
69
u
41
5.50129 × 10
69
u
40
+ ··· + 5.73462 × 10
68
a + 2.57458 × 10
71
,
u
42
+ 6u
41
+ ··· 608u 128i
I
u
2
= h46u
7
a
3
35u
7
a
2
+ ··· + 42a 8, 6u
7
a
3
+ 22u
7
a
2
+ ··· 74a + 151,
u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2i
I
u
3
= h−2543842u
17
14606334u
16
+ ··· + 48416059b + 19223447,
118380102u
17
83676763u
16
+ ··· + 48416059a 243963069, u
18
+ u
17
+ ··· + u 1i
I
u
4
= h9.40126 × 10
20
a
7
u
5
1.79850 × 10
21
a
6
u
5
+ ··· 8.65728 × 10
21
a + 3.41117 × 10
21
,
2a
7
u
5
15a
6
u
5
+ ··· 17a + 4, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
v
1
= ha, 8v
2
+ b + 26v + 7, 4v
3
+ 14v
2
+ 7v + 1i
I
v
2
= ha, b
4
+ b
3
+ 2b
2
+ 2b + 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 147 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.48 × 10
68
u
41
+ 7.82 × 10
68
u
40
+ · · · + 7.17 × 10
67
b 2.62 ×
10
70
, 1.00 × 10
69
u
41
5.50 × 10
69
u
40
+ · · · + 5.73 × 10
68
a + 2.57 ×
10
71
, u
42
+ 6u
41
+ · · · 608u 128i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
1.74520u
41
+ 9.59312u
40
+ ··· 1224.97u 448.953
2.06877u
41
10.9072u
40
+ ··· + 1234.36u + 364.984
a
9
=
5.46026u
41
+ 28.9099u
40
+ ··· 3303.48u 1037.79
0.875191u
41
4.68441u
40
+ ··· + 555.689u + 190.129
a
12
=
3.81397u
41
+ 20.5003u
40
+ ··· 2459.34u 813.937
2.06877u
41
10.9072u
40
+ ··· + 1234.36u + 364.984
a
1
=
4.29657u
41
22.4006u
40
+ ··· + 2436.80u + 697.290
0.303303u
41
+ 1.95238u
40
+ ··· 355.882u 170.418
a
6
=
1.88477u
41
9.85936u
40
+ ··· + 1085.97u + 325.842
1.16502u
41
5.92185u
40
+ ··· + 584.581u + 132.111
a
10
=
3.30608u
41
+ 17.3565u
40
+ ··· 1920.32u 597.894
0.0369235u
41
+ 0.105769u
40
+ ··· 130.892u 62.0948
a
5
=
1.33567u
41
6.59646u
40
+ ··· + 576.521u + 94.3766
2.96090u
41
15.8041u
40
+ ··· + 1860.27u + 602.914
a
2
=
3.00789u
41
15.7631u
40
+ ··· + 1745.87u + 515.839
0.0851750u
41
0.0145890u
40
+ ··· 165.539u 129.080
(ii) Obstruction class = 1
(iii) Cusp Shapes = 50.5421u
41
+ 265.980u
40
+ ··· 29786.7u 9077.56
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
42
3u
41
+ ··· + 140u + 16
c
3
, c
7
u
42
6u
41
+ ··· + 608u 128
c
5
, c
6
, c
9
c
11
u
42
+ 16u
40
+ ··· + u 1
c
8
, c
10
u
42
+ 2u
41
+ ··· + 2u + 1
c
12
u
42
+ 39u
41
+ ··· + 24641536u + 1048576
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
42
37y
41
+ ··· 7536y + 256
c
3
, c
7
y
42
18y
41
+ ··· 388096y + 16384
c
5
, c
6
, c
9
c
11
y
42
+ 32y
41
+ ··· 19y + 1
c
8
, c
10
y
42
2y
41
+ ··· 52y + 1
c
12
y
42
y
41
+ ··· 16217796509696y + 1099511627776
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.943550 + 0.455289I
a = 1.34280 + 0.76709I
b = 0.753628 + 0.162890I
1.59198 3.61998I 15.2323 + 5.2048I
u = 0.943550 0.455289I
a = 1.34280 0.76709I
b = 0.753628 0.162890I
1.59198 + 3.61998I 15.2323 5.2048I
u = 0.269584 + 0.910303I
a = 0.762837 + 0.613812I
b = 0.657573 0.228220I
4.18007 1.80472I 18.2389 + 0.1966I
u = 0.269584 0.910303I
a = 0.762837 0.613812I
b = 0.657573 + 0.228220I
4.18007 + 1.80472I 18.2389 0.1966I
u = 0.062598 + 1.055270I
a = 0.046684 + 0.319719I
b = 0.250114 1.286520I
7.85485 3.56337I 2.67014 + 3.62743I
u = 0.062598 1.055270I
a = 0.046684 0.319719I
b = 0.250114 + 1.286520I
7.85485 + 3.56337I 2.67014 3.62743I
u = 0.466056 + 0.981999I
a = 0.048754 0.335975I
b = 0.41161 + 1.40369I
8.88785 + 7.82161I 5.25158 5.23582I
u = 0.466056 0.981999I
a = 0.048754 + 0.335975I
b = 0.41161 1.40369I
8.88785 7.82161I 5.25158 + 5.23582I
u = 0.786496 + 0.002563I
a = 2.39632 + 0.05081I
b = 0.465074 0.281780I
2.91939 0.16667I 21.2268 + 8.1932I
u = 0.786496 0.002563I
a = 2.39632 0.05081I
b = 0.465074 + 0.281780I
2.91939 + 0.16667I 21.2268 8.1932I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.184420 + 0.429182I
a = 0.697295 + 0.202000I
b = 0.812246 + 0.378376I
5.91413 + 2.39057I 0
u = 1.184420 0.429182I
a = 0.697295 0.202000I
b = 0.812246 0.378376I
5.91413 2.39057I 0
u = 1.253720 + 0.213033I
a = 1.287820 + 0.268400I
b = 0.606517 0.635131I
9.38202 1.73644I 0
u = 1.253720 0.213033I
a = 1.287820 0.268400I
b = 0.606517 + 0.635131I
9.38202 + 1.73644I 0
u = 1.171280 + 0.521960I
a = 1.69502 0.32871I
b = 0.49391 1.37449I
4.28505 + 8.46529I 0
u = 1.171280 0.521960I
a = 1.69502 + 0.32871I
b = 0.49391 + 1.37449I
4.28505 8.46529I 0
u = 1.183490 + 0.564393I
a = 1.075040 0.521185I
b = 0.905363 0.213820I
7.00695 + 7.14218I 0
u = 1.183490 0.564393I
a = 1.075040 + 0.521185I
b = 0.905363 + 0.213820I
7.00695 7.14218I 0
u = 0.582949 + 0.315976I
a = 0.876169 0.195926I
b = 0.539552 0.112152I
0.538615 0.005437I 12.84477 0.43346I
u = 0.582949 0.315976I
a = 0.876169 + 0.195926I
b = 0.539552 + 0.112152I
0.538615 + 0.005437I 12.84477 + 0.43346I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.610840 + 1.193460I
a = 0.054193 + 0.342180I
b = 0.52479 1.40750I
3.43638 11.55830I 0
u = 0.610840 1.193460I
a = 0.054193 0.342180I
b = 0.52479 + 1.40750I
3.43638 + 11.55830I 0
u = 1.163520 + 0.689411I
a = 1.72107 0.08499I
b = 0.52703 + 1.44729I
6.7272 13.9058I 0
u = 1.163520 0.689411I
a = 1.72107 + 0.08499I
b = 0.52703 1.44729I
6.7272 + 13.9058I 0
u = 0.534889 + 1.254550I
a = 0.262606 0.299605I
b = 0.206473 + 0.740584I
1.23399 + 1.54080I 0
u = 0.534889 1.254550I
a = 0.262606 + 0.299605I
b = 0.206473 0.740584I
1.23399 1.54080I 0
u = 0.535582 + 0.088545I
a = 0.050104 + 0.333280I
b = 0.22875 1.51299I
7.50056 5.01376I 21.5440 1.4253I
u = 0.535582 0.088545I
a = 0.050104 0.333280I
b = 0.22875 + 1.51299I
7.50056 + 5.01376I 21.5440 + 1.4253I
u = 1.22163 + 0.80316I
a = 1.55023 + 0.27538I
b = 0.56950 1.48815I
1.4008 + 18.6869I 0
u = 1.22163 0.80316I
a = 1.55023 0.27538I
b = 0.56950 + 1.48815I
1.4008 18.6869I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.17869 + 0.90581I
a = 0.942618 0.308680I
b = 0.163308 + 1.189210I
0.91717 + 9.50337I 0
u = 1.17869 0.90581I
a = 0.942618 + 0.308680I
b = 0.163308 1.189210I
0.91717 9.50337I 0
u = 0.491641
a = 4.91091
b = 0.343981
2.80521 47.0160
u = 1.20729 + 0.91942I
a = 0.752800 + 0.170890I
b = 0.065111 1.139040I
4.02842 4.18037I 0
u = 1.20729 0.91942I
a = 0.752800 0.170890I
b = 0.065111 + 1.139040I
4.02842 + 4.18037I 0
u = 1.48911 + 0.29406I
a = 0.896680 + 0.297454I
b = 0.617444 + 1.108590I
6.18728 8.08758I 0
u = 1.48911 0.29406I
a = 0.896680 0.297454I
b = 0.617444 1.108590I
6.18728 + 8.08758I 0
u = 1.50353 + 0.22766I
a = 0.444601 0.413741I
b = 0.308344 0.976227I
1.53844 + 4.49579I 0
u = 1.50353 0.22766I
a = 0.444601 + 0.413741I
b = 0.308344 + 0.976227I
1.53844 4.49579I 0
u = 1.01992 + 1.13548I
a = 0.362994 0.380675I
b = 0.031656 + 1.071510I
0.04635 1.77468I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.01992 1.13548I
a = 0.362994 + 0.380675I
b = 0.031656 1.071510I
0.04635 + 1.77468I 0
u = 0.415199
a = 0.943147
b = 0.390970
0.638593 15.1720
9
II. I
u
2
= h46u
7
a
3
35u
7
a
2
+ · · · + 42a 8, 6u
7
a
3
+ 22u
7
a
2
+ · · · 74a +
151, u
8
3u
7
+ · · · 2u + 2i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
a
1.58621a
3
u
7
+ 1.20690a
2
u
7
+ ··· 1.44828a + 0.275862
a
9
=
0.793103a
3
u
7
+ 0.206897a
2
u
7
+ ··· + 0.275862a 5.72414
0.206897a
2
u
7
0.896552u
7
+ ··· + 0.551724a
2
0.275862
a
12
=
1.58621a
3
u
7
1.20690a
2
u
7
+ ··· + 2.44828a 0.275862
1.58621a
3
u
7
+ 1.20690a
2
u
7
+ ··· 1.44828a + 0.275862
a
1
=
3
2
u
7
7
2
u
6
+ ··· +
3
2
u 3
u
7
+ 2u
6
u
5
3u
4
+ 5u
3
3u
2
u + 1
a
6
=
1.03448a
3
u
7
1.17241a
2
u
7
+ ··· 4.62069a + 5.10345
0.241379a
3
u
7
+ 0.965517a
2
u
7
+ ··· + 4.34483a + 2.62069
a
10
=
1.58621a
3
u
7
+ 1.20690a
2
u
7
+ ··· + 3.55172a 5.72414
0.586207a
3
u
7
0.206897a
2
u
7
+ ··· 4.55172a + 2.72414
a
5
=
1
2
u
7
1
2
u
6
+ ···
1
2
u
2
+
3
2
u
u
7
3u
6
+ 2u
5
+ 3u
4
8u
3
+ 6u
2
3
a
2
=
1
2
u
7
3
2
u
6
+ ··· +
1
2
u 1
u
7
+ 2u
6
3u
4
+ 4u
3
2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
48
29
u
7
a
3
+
92
29
u
7
a
2
+ ···
64
29
a
264
29
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
(u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1)
4
c
3
, c
7
(u
8
+ 3u
7
+ 3u
6
2u
5
8u
4
9u
3
3u
2
+ 2u + 2)
4
c
5
, c
6
, c
9
c
11
u
32
+ u
31
+ ··· 108u + 19
c
8
, c
10
u
32
7u
31
+ ··· 148u + 13
c
12
(u
2
u + 1)
16
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1)
4
c
3
, c
7
(y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4)
4
c
5
, c
6
, c
9
c
11
y
32
+ 21y
31
+ ··· + 6120y + 361
c
8
, c
10
y
32
+ y
31
+ ··· + 248y + 169
c
12
(y
2
+ y + 1)
16
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.821613 + 0.567011I
a = 0.496625 0.438250I
b = 0.52992 1.64688I
6.41985 0.23387I 3.94128 + 1.06967I
u = 0.821613 + 0.567011I
a = 0.26645 1.48983I
b = 0.073416 + 1.309500I
6.41985 4.29364I 3.94128 + 7.99788I
u = 0.821613 + 0.567011I
a = 2.39394 + 0.27463I
b = 0.73198 1.51497I
6.41985 4.29364I 3.94128 + 7.99788I
u = 0.821613 + 0.567011I
a = 2.61276 0.79661I
b = 0.022697 + 1.179290I
6.41985 0.23387I 3.94128 + 1.06967I
u = 0.821613 0.567011I
a = 0.496625 + 0.438250I
b = 0.52992 + 1.64688I
6.41985 + 0.23387I 3.94128 1.06967I
u = 0.821613 0.567011I
a = 0.26645 + 1.48983I
b = 0.073416 1.309500I
6.41985 + 4.29364I 3.94128 7.99788I
u = 0.821613 0.567011I
a = 2.39394 0.27463I
b = 0.73198 + 1.51497I
6.41985 + 4.29364I 3.94128 7.99788I
u = 0.821613 0.567011I
a = 2.61276 + 0.79661I
b = 0.022697 1.179290I
6.41985 + 0.23387I 3.94128 1.06967I
u = 0.432344 + 1.079150I
a = 0.100401 + 0.617152I
b = 1.201190 + 0.090721I
1.29038 + 5.58743I 12.52739 6.08899I
u = 0.432344 + 1.079150I
a = 0.361262 0.454625I
b = 0.207449 + 0.429798I
1.29038 + 1.52767I 12.52739 + 0.83921I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.432344 + 1.079150I
a = 0.451119 + 0.354898I
b = 0.341939 1.164380I
1.29038 + 5.58743I 12.52739 6.08899I
u = 0.432344 + 1.079150I
a = 0.305199 0.335131I
b = 0.292741 + 0.851162I
1.29038 + 1.52767I 12.52739 + 0.83921I
u = 0.432344 1.079150I
a = 0.100401 0.617152I
b = 1.201190 0.090721I
1.29038 5.58743I 12.52739 + 6.08899I
u = 0.432344 1.079150I
a = 0.361262 + 0.454625I
b = 0.207449 0.429798I
1.29038 1.52767I 12.52739 0.83921I
u = 0.432344 1.079150I
a = 0.451119 0.354898I
b = 0.341939 + 1.164380I
1.29038 5.58743I 12.52739 + 6.08899I
u = 0.432344 1.079150I
a = 0.305199 + 0.335131I
b = 0.292741 0.851162I
1.29038 1.52767I 12.52739 0.83921I
u = 1.38845
a = 0.810223 + 0.602331I
b = 0.367950 + 0.903689I
8.50968 + 2.02988I 16.3375 3.4641I
u = 1.38845
a = 0.810223 0.602331I
b = 0.367950 0.903689I
8.50968 2.02988I 16.3375 + 3.4641I
u = 1.38845
a = 1.129680 + 0.049021I
b = 1.122510 0.403244I
8.50968 2.02988I 16.3375 + 3.4641I
u = 1.38845
a = 1.129680 0.049021I
b = 1.122510 + 0.403244I
8.50968 + 2.02988I 16.3375 3.4641I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.215250 + 0.684012I
a = 1.165160 0.211690I
b = 0.639095 + 1.148790I
3.80498 7.85312I 13.28252 + 2.60552I
u = 1.215250 + 0.684012I
a = 1.086450 0.626118I
b = 1.43070 + 0.15248I
3.80498 11.91290I 13.2825 + 9.5337I
u = 1.215250 + 0.684012I
a = 0.387082 0.088325I
b = 0.213058 + 0.253663I
3.80498 7.85312I 13.28252 + 2.60552I
u = 1.215250 + 0.684012I
a = 1.73531 + 0.10229I
b = 0.429159 1.222660I
3.80498 11.91290I 13.2825 + 9.5337I
u = 1.215250 0.684012I
a = 1.165160 + 0.211690I
b = 0.639095 1.148790I
3.80498 + 7.85312I 13.28252 2.60552I
u = 1.215250 0.684012I
a = 1.086450 + 0.626118I
b = 1.43070 0.15248I
3.80498 + 11.91290I 13.2825 9.5337I
u = 1.215250 0.684012I
a = 0.387082 + 0.088325I
b = 0.213058 0.253663I
3.80498 + 7.85312I 13.28252 2.60552I
u = 1.215250 0.684012I
a = 1.73531 0.10229I
b = 0.429159 + 1.222660I
3.80498 + 11.91290I 13.2825 9.5337I
u = 0.549965
a = 2.01507 + 0.46937I
b = 0.255913 + 1.378810I
4.21577 2.02988I 12.16015 + 3.46410I
u = 0.549965
a = 2.01507 0.46937I
b = 0.255913 1.378810I
4.21577 + 2.02988I 12.16015 3.46410I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.549965
a = 0.53043 + 4.87830I
b = 0.427270 + 1.082010I
4.21577 + 2.02988I 12.16015 3.46410I
u = 0.549965
a = 0.53043 4.87830I
b = 0.427270 1.082010I
4.21577 2.02988I 12.16015 + 3.46410I
16
III.
I
u
3
= h−2.54 × 10
6
u
17
1.46 × 10
7
u
16
+ · · · + 4.84 × 10
7
b + 1.92 × 10
7
, 1.18 ×
10
8
u
17
8.37 × 10
7
u
16
+ · · · + 4.84 × 10
7
a 2.44 × 10
8
, u
18
+ u
17
+ · · · + u 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
2.44506u
17
+ 1.72829u
16
+ ··· 2.56183u + 5.03889
0.0525413u
17
+ 0.301684u
16
+ ··· + 0.880761u 0.397047
a
9
=
0.999862u
17
+ 1.73119u
16
+ ··· 5.39506u 5.34506
0.411438u
17
0.578846u
16
+ ··· + 0.180593u + 0.176599
a
12
=
2.39252u
17
+ 1.42660u
16
+ ··· 3.44259u + 5.43593
0.0525413u
17
+ 0.301684u
16
+ ··· + 0.880761u 0.397047
a
1
=
0.482663u
17
+ 0.187223u
16
+ ··· 0.596217u + 0.702631
0.0998597u
17
+ 0.114275u
16
+ ··· + 0.581502u 0.0462974
a
6
=
3.34248u
17
+ 4.59289u
16
+ ··· 17.7756u + 0.849286
0.0239398u
17
0.417477u
16
+ ··· + 2.28107u + 0.680274
a
10
=
2.03362u
17
+ 1.14944u
16
+ ··· 2.38124u + 6.21549
0.0525413u
17
+ 0.301684u
16
+ ··· + 0.880761u 0.397047
a
5
=
0.602448u
17
0.364456u
16
+ ··· + 0.792818u 0.951774
0.119785u
17
+ 0.177233u
16
+ ··· 0.196601u + 0.249142
a
2
=
0.527854u
17
+ 0.454267u
16
+ ··· 1.43666u + 0.940623
0.0332079u
17
0.113318u
16
+ ··· + 1.24528u 0.0624363
(ii) Obstruction class = 1
(iii) Cusp Shapes =
191549447
48416059
u
17
183440518
48416059
u
16
+ ··· +
478561907
48416059
u
255825818
48416059
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
18
+ 3u
17
+ ··· + 3u 1
c
3
u
18
u
17
+ ··· u 1
c
4
u
18
3u
17
+ ··· 3u 1
c
5
, c
11
u
18
+ 10u
16
+ ··· 10u + 1
c
6
, c
9
u
18
+ 10u
16
+ ··· + 10u + 1
c
7
u
18
+ u
17
+ ··· + u 1
c
8
, c
10
u
18
+ 2u
17
+ ··· 3u + 1
c
12
u
18
+ 3u
17
+ ··· 2u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
18
17y
17
+ ··· + 7y + 1
c
3
, c
7
y
18
9y
17
+ ··· y + 1
c
5
, c
6
, c
9
c
11
y
18
+ 20y
17
+ ··· 54y + 1
c
8
, c
10
y
18
+ 2y
17
+ ··· 3y + 1
c
12
y
18
3y
17
+ ··· + 2y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.667124 + 0.619286I
a = 1.01984 + 1.11236I
b = 0.212619 1.347020I
5.76963 + 2.84768I 5.80039 3.08267I
u = 0.667124 0.619286I
a = 1.01984 1.11236I
b = 0.212619 + 1.347020I
5.76963 2.84768I 5.80039 + 3.08267I
u = 1.055780 + 0.337935I
a = 0.752306 + 0.462739I
b = 0.52727 + 1.35411I
0.149777 + 0.573147I 11.90162 1.71738I
u = 1.055780 0.337935I
a = 0.752306 0.462739I
b = 0.52727 1.35411I
0.149777 0.573147I 11.90162 + 1.71738I
u = 1.033920 + 0.533161I
a = 1.072240 0.558681I
b = 0.25310 + 1.50609I
1.35611 6.05440I 11.20100 + 4.57946I
u = 1.033920 0.533161I
a = 1.072240 + 0.558681I
b = 0.25310 1.50609I
1.35611 + 6.05440I 11.20100 4.57946I
u = 1.29032
a = 1.10366
b = 0.542837
9.23099 17.8620
u = 0.558729 + 0.320333I
a = 0.56850 2.05955I
b = 0.410236 1.270600I
4.90710 + 1.43926I 3.61056 + 2.10868I
u = 0.558729 0.320333I
a = 0.56850 + 2.05955I
b = 0.410236 + 1.270600I
4.90710 1.43926I 3.61056 2.10868I
u = 0.620039
a = 2.97714
b = 0.128138
2.58277 0.576260
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.31870 + 0.61305I
a = 0.711353 0.204327I
b = 0.313099 0.878541I
2.11412 4.59078I 5.85313 + 11.31334I
u = 1.31870 0.61305I
a = 0.711353 + 0.204327I
b = 0.313099 + 0.878541I
2.11412 + 4.59078I 5.85313 11.31334I
u = 1.25726 + 0.73302I
a = 0.981696 0.076103I
b = 0.547277 + 0.825974I
3.59976 + 9.26853I 12.3886 8.3976I
u = 1.25726 0.73302I
a = 0.981696 + 0.076103I
b = 0.547277 0.825974I
3.59976 9.26853I 12.3886 + 8.3976I
u = 0.154725 + 0.410246I
a = 6.48299 9.35699I
b = 0.334159 + 1.303000I
3.14889 + 2.15923I 0.71378 + 11.60791I
u = 0.154725 0.410246I
a = 6.48299 + 9.35699I
b = 0.334159 1.303000I
3.14889 2.15923I 0.71378 11.60791I
u = 0.92104 + 1.30056I
a = 0.162423 0.197229I
b = 0.126798 + 0.744120I
1.35926 1.84701I 25.8879 + 15.8048I
u = 0.92104 1.30056I
a = 0.162423 + 0.197229I
b = 0.126798 0.744120I
1.35926 + 1.84701I 25.8879 15.8048I
21
IV. I
u
4
= h9.40 × 10
20
a
7
u
5
1.80 × 10
21
a
6
u
5
+ · · · 8.66 × 10
21
a + 3.41 ×
10
21
, 2a
7
u
5
15a
6
u
5
+ · · · 17a + 4, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
a
0.619077a
7
u
5
+ 1.18432a
6
u
5
+ ··· + 5.70086a 2.24627
a
9
=
0.144354a
7
u
5
0.0472911a
6
u
5
+ ··· + 2.04271a + 1.04864
0.432105a
7
u
5
0.470608a
6
u
5
+ ··· + 6.51432a + 0.283008
a
12
=
0.619077a
7
u
5
1.18432a
6
u
5
+ ··· 4.70086a + 2.24627
0.619077a
7
u
5
+ 1.18432a
6
u
5
+ ··· + 5.70086a 2.24627
a
1
=
0.504551a
7
u
5
1.18691a
6
u
5
+ ··· 6.01844a + 2.02586
0.324435a
7
u
5
0.258046a
6
u
5
+ ··· + 6.15154a + 0.0467776
a
6
=
0.548791a
7
u
5
0.215845a
6
u
5
+ ··· + 10.3830a + 0.685023
0.693145a
7
u
5
+ 0.263136a
6
u
5
+ ··· 12.4257a + 0.266333
a
10
=
0.365245a
7
u
5
2.17240a
6
u
5
+ ··· 2.92393a + 3.61311
1.24989a
7
u
5
+ 1.93322a
6
u
5
+ ··· + 15.2852a 3.25253
a
5
=
0.178710a
7
u
5
+ 0.628134a
6
u
5
+ ··· 3.07508a 1.50634
0.325841a
7
u
5
1.81504a
6
u
5
+ ··· 2.94336a + 3.53220
a
2
=
0.109496a
7
u
5
1.15664a
6
u
5
+ ··· + 0.510002a + 2.23395
0.236751a
7
u
5
+ 1.06982a
6
u
5
+ ··· + 3.70555a 2.28804
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19685370949816372
64944255491057667
a
7
u
5
2890452071925236
64944255491057667
a
6
u
5
+···
318855097360929472
64944255491057667
a
635548858610032834
64944255491057667
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
(u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1)
4
c
3
, c
7
(u
6
u
5
u
4
+ 2u
3
u + 1)
8
c
5
, c
6
, c
9
c
11
u
48
+ u
47
+ ··· 6u + 67
c
8
, c
10
u
48
15u
47
+ ··· 1598u + 181
c
12
(u
2
u + 1)
24
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
12
9y
11
+ ··· + 4y + 1)
4
c
3
, c
7
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
8
c
5
, c
6
, c
9
c
11
y
48
+ 45y
47
+ ··· + 147096y + 4489
c
8
, c
10
y
48
+ 21y
47
+ ··· + 890464y + 32761
c
12
(y
2
+ y + 1)
24
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.775552 0.660384I
b = 0.509589 + 0.258929I
0.245672 + 1.105580I 13.71672 2.66988I
u = 1.002190 + 0.295542I
a = 0.707173 + 0.866335I
b = 1.13881 + 0.88777I
0.245672 + 1.105580I 13.71672 2.66988I
u = 1.002190 + 0.295542I
a = 0.567084 + 0.568800I
b = 0.23682 1.40073I
0.245672 + 1.105580I 13.71672 2.66988I
u = 1.002190 + 0.295542I
a = 1.059310 0.667850I
b = 0.034695 0.596516I
0.24567 2.95419I 13.7167 + 4.2583I
u = 1.002190 + 0.295542I
a = 0.617928 + 1.137550I
b = 0.031020 + 0.957172I
0.245672 + 1.105580I 13.71672 2.66988I
u = 1.002190 + 0.295542I
a = 0.253602 + 0.071603I
b = 0.02794 + 1.63414I
0.24567 2.95419I 13.7167 + 4.2583I
u = 1.002190 + 0.295542I
a = 1.74575 0.31336I
b = 1.068290 + 0.063919I
0.24567 2.95419I 13.7167 + 4.2583I
u = 1.002190 + 0.295542I
a = 2.02925 1.13201I
b = 0.285419 1.140150I
0.24567 2.95419I 13.7167 + 4.2583I
u = 1.002190 0.295542I
a = 0.775552 + 0.660384I
b = 0.509589 0.258929I
0.245672 1.105580I 13.71672 + 2.66988I
u = 1.002190 0.295542I
a = 0.707173 0.866335I
b = 1.13881 0.88777I
0.245672 1.105580I 13.71672 + 2.66988I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.002190 0.295542I
a = 0.567084 0.568800I
b = 0.23682 + 1.40073I
0.245672 1.105580I 13.71672 + 2.66988I
u = 1.002190 0.295542I
a = 1.059310 + 0.667850I
b = 0.034695 + 0.596516I
0.24567 + 2.95419I 13.7167 4.2583I
u = 1.002190 0.295542I
a = 0.617928 1.137550I
b = 0.031020 0.957172I
0.245672 1.105580I 13.71672 + 2.66988I
u = 1.002190 0.295542I
a = 0.253602 0.071603I
b = 0.02794 1.63414I
0.24567 + 2.95419I 13.7167 4.2583I
u = 1.002190 0.295542I
a = 1.74575 + 0.31336I
b = 1.068290 0.063919I
0.24567 + 2.95419I 13.7167 4.2583I
u = 1.002190 0.295542I
a = 2.02925 + 1.13201I
b = 0.285419 + 1.140150I
0.24567 + 2.95419I 13.7167 4.2583I
u = 0.428243 + 0.664531I
a = 0.424006 + 0.749679I
b = 0.347802 + 0.145509I
3.53554 + 1.10558I 6.28328 2.66988I
u = 0.428243 + 0.664531I
a = 0.109037 0.835332I
b = 0.980418 0.347385I
3.53554 2.95419I 6.28328 + 4.25833I
u = 0.428243 + 0.664531I
a = 0.514379 0.344758I
b = 0.236687 + 1.251690I
3.53554 2.95419I 6.28328 + 4.25833I
u = 0.428243 + 0.664531I
a = 1.51339 + 0.24563I
b = 0.63729 + 1.39949I
3.53554 2.95419I 6.28328 + 4.25833I
26
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.428243 + 0.664531I
a = 0.395311 + 0.191403I
b = 0.063487 1.241750I
3.53554 + 1.10558I 6.28328 2.66988I
u = 0.428243 + 0.664531I
a = 0.51608 + 2.28821I
b = 0.118211 1.155270I
3.53554 + 1.10558I 6.28328 2.66988I
u = 0.428243 + 0.664531I
a = 3.30609 2.45775I
b = 0.46396 + 1.53136I
3.53554 + 1.10558I 6.28328 2.66988I
u = 0.428243 + 0.664531I
a = 3.27764 + 3.14924I
b = 0.138713 1.288100I
3.53554 2.95419I 6.28328 + 4.25833I
u = 0.428243 0.664531I
a = 0.424006 0.749679I
b = 0.347802 0.145509I
3.53554 1.10558I 6.28328 + 2.66988I
u = 0.428243 0.664531I
a = 0.109037 + 0.835332I
b = 0.980418 + 0.347385I
3.53554 + 2.95419I 6.28328 4.25833I
u = 0.428243 0.664531I
a = 0.514379 + 0.344758I
b = 0.236687 1.251690I
3.53554 + 2.95419I 6.28328 4.25833I
u = 0.428243 0.664531I
a = 1.51339 0.24563I
b = 0.63729 1.39949I
3.53554 + 2.95419I 6.28328 4.25833I
u = 0.428243 0.664531I
a = 0.395311 0.191403I
b = 0.063487 + 1.241750I
3.53554 1.10558I 6.28328 + 2.66988I
u = 0.428243 0.664531I
a = 0.51608 2.28821I
b = 0.118211 + 1.155270I
3.53554 1.10558I 6.28328 + 2.66988I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 3.30609 + 2.45775I
b = 0.46396 1.53136I
3.53554 1.10558I 6.28328 + 2.66988I
u = 0.428243 0.664531I
a = 3.27764 3.14924I
b = 0.138713 + 1.288100I
3.53554 + 2.95419I 6.28328 4.25833I
u = 1.073950 + 0.558752I
a = 0.243335 + 1.147080I
b = 0.049252 1.384420I
1.64493 + 7.72290I 10.00000 8.97467I
u = 1.073950 + 0.558752I
a = 1.243930 0.068036I
b = 0.422756 1.046490I
1.64493 + 3.66314I 10.0000 2.04647I
u = 1.073950 + 0.558752I
a = 1.33854 + 0.68306I
b = 1.276570 0.165471I
1.64493 + 7.72290I 10.00000 8.97467I
u = 1.073950 + 0.558752I
a = 0.276943 + 0.247722I
b = 0.48789 + 1.80331I
1.64493 + 3.66314I 10.00000 2.04647I
u = 1.073950 + 0.558752I
a = 0.135569 + 0.287270I
b = 0.021435 0.262960I
1.64493 + 3.66314I 10.00000 2.04647I
u = 1.073950 + 0.558752I
a = 1.71509 0.08243I
b = 0.90809 + 1.55445I
1.64493 + 7.72290I 10.0000 8.97467I
u = 1.073950 + 0.558752I
a = 1.93484 + 0.49453I
b = 0.088785 1.144550I
1.64493 + 3.66314I 10.0000 2.04647I
u = 1.073950 + 0.558752I
a = 2.08258 + 0.16719I
b = 0.364647 + 1.204880I
1.64493 + 7.72290I 10.0000 8.97467I
28
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 0.243335 1.147080I
b = 0.049252 + 1.384420I
1.64493 7.72290I 10.00000 + 8.97467I
u = 1.073950 0.558752I
a = 1.243930 + 0.068036I
b = 0.422756 + 1.046490I
1.64493 3.66314I 10.0000 + 2.04647I
u = 1.073950 0.558752I
a = 1.33854 0.68306I
b = 1.276570 + 0.165471I
1.64493 7.72290I 10.00000 + 8.97467I
u = 1.073950 0.558752I
a = 0.276943 0.247722I
b = 0.48789 1.80331I
1.64493 3.66314I 10.00000 + 2.04647I
u = 1.073950 0.558752I
a = 0.135569 0.287270I
b = 0.021435 + 0.262960I
1.64493 3.66314I 10.00000 + 2.04647I
u = 1.073950 0.558752I
a = 1.71509 + 0.08243I
b = 0.90809 1.55445I
1.64493 7.72290I 10.0000 + 8.97467I
u = 1.073950 0.558752I
a = 1.93484 0.49453I
b = 0.088785 + 1.144550I
1.64493 3.66314I 10.0000 + 2.04647I
u = 1.073950 0.558752I
a = 2.08258 0.16719I
b = 0.364647 1.204880I
1.64493 7.72290I 10.0000 + 8.97467I
29
V. I
v
1
= ha, 8v
2
+ b + 26v + 7, 4v
3
+ 14v
2
+ 7v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
11
=
0
8v
2
26v 7
a
9
=
1
4v
2
+ 12v + 1
a
12
=
8v
2
+ 26v + 7
8v
2
26v 7
a
1
=
1
4v
2
+ 14v + 7
a
6
=
4v
2
+ 12v + 2
4v
2
12v 1
a
10
=
8v
2
26v 7
20v
2
+ 64v + 16
a
5
=
1
4v
2
14v 7
a
2
=
v 1
4v
2
+ 14v + 7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45v
2
+ 150v + 41
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
8
c
10
u
3
+ 2u 1
c
9
, c
11
u
3
+ 2u + 1
c
12
u
3
+ 3u
2
+ 5u + 2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y
3
+ 4y
2
+ 4y 1
c
12
y
3
+ y
2
+ 13y 4
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.283866 + 0.068399I
a = 0
b = 0.22670 1.46771I
7.79580 5.13794I 1.83568 + 8.51237I
v = 0.283866 0.068399I
a = 0
b = 0.22670 + 1.46771I
7.79580 + 5.13794I 1.83568 8.51237I
v = 2.93227
a = 0
b = 0.453398
2.43213 11.9210
33
VI. I
v
2
= ha, b
4
+ b
3
+ 2b
2
+ 2b + 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
1
0
a
8
=
1
0
a
4
=
1
0
a
11
=
0
b
a
9
=
1
b
2
a
12
=
b
b
a
1
=
b
3
2b
1
a
6
=
b
2
+ 1
b
2
a
10
=
2b
3
+ b
2
+ 3b + 3
b
3
b 1
a
5
=
b
3
+ 2b
1
a
2
=
b
3
2b + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
3
4b 12
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
, c
8
c
10
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
9
, c
11
u
4
u
3
+ 2u
2
2u + 1
c
12
(u
2
u + 1)
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y
4
+ 3y
3
+ 2y
2
+ 1
c
12
(y
2
+ y + 1)
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.621744 + 0.440597I
1.64493 + 2.02988I 10.00000 3.46410I
v = 1.00000
a = 0
b = 0.621744 0.440597I
1.64493 2.02988I 10.00000 + 3.46410I
v = 1.00000
a = 0
b = 0.121744 + 1.306620I
1.64493 2.02988I 10.00000 + 3.46410I
v = 1.00000
a = 0
b = 0.121744 1.306620I
1.64493 + 2.02988I 10.00000 3.46410I
37
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
7
(u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1)
4
· (u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1)
4
· (u
18
+ 3u
17
+ ··· + 3u 1)(u
42
3u
41
+ ··· + 140u + 16)
c
3
u
7
(u
6
u
5
u
4
+ 2u
3
u + 1)
8
· (u
8
+ 3u
7
+ 3u
6
2u
5
8u
4
9u
3
3u
2
+ 2u + 2)
4
· (u
18
u
17
+ ··· u 1)(u
42
6u
41
+ ··· + 608u 128)
c
4
(u + 1)
7
(u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1)
4
· (u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1)
4
· (u
18
3u
17
+ ··· 3u 1)(u
42
3u
41
+ ··· + 140u + 16)
c
5
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
18
+ 10u
16
+ ··· 10u + 1)
· (u
32
+ u
31
+ ··· 108u + 19)(u
42
+ 16u
40
+ ··· + u 1)
· (u
48
+ u
47
+ ··· 6u + 67)
c
6
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
18
+ 10u
16
+ ··· + 10u + 1)
· (u
32
+ u
31
+ ··· 108u + 19)(u
42
+ 16u
40
+ ··· + u 1)
· (u
48
+ u
47
+ ··· 6u + 67)
c
7
u
7
(u
6
u
5
u
4
+ 2u
3
u + 1)
8
· (u
8
+ 3u
7
+ 3u
6
2u
5
8u
4
9u
3
3u
2
+ 2u + 2)
4
· (u
18
+ u
17
+ ··· + u 1)(u
42
6u
41
+ ··· + 608u 128)
c
8
, c
10
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
18
+ 2u
17
+ ··· 3u + 1)
· (u
32
7u
31
+ ··· 148u + 13)(u
42
+ 2u
41
+ ··· + 2u + 1)
· (u
48
15u
47
+ ··· 1598u + 181)
c
9
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
18
+ 10u
16
+ ··· + 10u + 1)
· (u
32
+ u
31
+ ··· 108u + 19)(u
42
+ 16u
40
+ ··· + u 1)
· (u
48
+ u
47
+ ··· 6u + 67)
c
11
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
18
+ 10u
16
+ ··· 10u + 1)
· (u
32
+ u
31
+ ··· 108u + 19)(u
42
+ 16u
40
+ ··· + u 1)
· (u
48
+ u
47
+ ··· 6u + 67)
c
12
((u
2
u + 1)
42
)(u
3
+ 3u
2
+ 5u + 2)(u
18
+ 3u
17
+ ··· 2u + 1)
· (u
42
+ 39u
41
+ ··· + 24641536u + 1048576)
38
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
7
(y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1)
4
· ((y
12
9y
11
+ ··· + 4y + 1)
4
)(y
18
17y
17
+ ··· + 7y + 1)
· (y
42
37y
41
+ ··· 7536y + 256)
c
3
, c
7
y
7
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
8
· (y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4)
4
· (y
18
9y
17
+ ··· y + 1)(y
42
18y
41
+ ··· 388096y + 16384)
c
5
, c
6
, c
9
c
11
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
18
+ 20y
17
+ ··· 54y + 1)
· (y
32
+ 21y
31
+ ··· + 6120y + 361)(y
42
+ 32y
41
+ ··· 19y + 1)
· (y
48
+ 45y
47
+ ··· + 147096y + 4489)
c
8
, c
10
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
18
+ 2y
17
+ ··· 3y + 1)
· (y
32
+ y
31
+ ··· + 248y + 169)(y
42
2y
41
+ ··· 52y + 1)
· (y
48
+ 21y
47
+ ··· + 890464y + 32761)
c
12
((y
2
+ y + 1)
42
)(y
3
+ y
2
+ 13y 4)(y
18
3y
17
+ ··· + 2y + 1)
· (y
42
y
41
+ ··· 16217796509696y + 1099511627776)
39