12a
0829
(K12a
0829
)
A knot diagram
1
Linearized knot diagam
4 5 8 2 10 12 3 11 7 1 9 6
Solving Sequence
3,8 4,11
9 12 7 10 6 1 5 2
c
3
c
8
c
11
c
7
c
9
c
6
c
12
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h7.15195 × 10
399
u
106
8.59095 × 10
399
u
105
+ ··· + 3.48006 × 10
400
b 4.32470 × 10
402
,
3.78913 × 10
398
u
106
5.25909 × 10
398
u
105
+ ··· + 4.09419 × 10
399
a 3.05225 × 10
401
,
u
107
2u
106
+ ··· 512u + 512i
I
u
2
= h22u
2
+ 17b + 2u + 40, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
I
v
1
= ha, 14536v
8
+ 40690v
7
+ ··· + 11959b + 36034,
v
9
+ 3v
8
2v
7
9v
6
+ 11v
5
+ 25v
4
+ 6v
3
2v
2
+ 3v + 1i
* 3 irreducible components of dim
C
= 0, with total 119 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h7.15 × 10
399
u
106
8.59 × 10
399
u
105
+ · · · + 3.48 × 10
400
b 4.32 ×
10
402
, 3.79 × 10
398
u
106
5.26 × 10
398
u
105
+ · · · + 4.09 × 10
399
a 3.05 ×
10
401
, u
107
2u
106
+ · · · 512u + 512i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
0.0925491u
106
+ 0.128453u
105
+ ··· + 27.8911u + 74.5508
0.205512u
106
+ 0.246862u
105
+ ··· + 10.0191u + 124.271
a
9
=
0.141762u
106
+ 0.160044u
105
+ ··· 13.9980u + 76.5882
0.0579410u
106
+ 0.0583727u
105
+ ··· 24.6379u + 21.0757
a
12
=
0.225565u
106
+ 0.289473u
105
+ ··· + 48.0564u + 157.554
0.280106u
106
+ 0.347672u
105
+ ··· + 48.3843u + 184.903
a
7
=
u
u
a
10
=
0.192530u
106
+ 0.222762u
105
+ ··· 4.85824u + 110.365
0.108709u
106
+ 0.121091u
105
+ ··· 15.4981u + 54.8520
a
6
=
0.151786u
106
0.171743u
105
+ ··· + 15.7215u 78.5804
0.00714381u
106
0.00235302u
105
+ ··· + 22.5669u + 5.72998
a
1
=
0.0917504u
106
0.139578u
105
+ ··· 54.8541u 83.2245
0.0193726u
106
+ 0.0291699u
105
+ ··· + 7.73340u + 16.5814
a
5
=
0.125588u
106
+ 0.200162u
105
+ ··· + 87.0752u + 122.294
0.0338377u
106
+ 0.0605837u
105
+ ··· + 32.2211u + 39.0699
a
2
=
0.125588u
106
0.200162u
105
+ ··· 87.0752u 122.294
0.0267303u
106
+ 0.0296535u
105
+ ··· 5.96052u + 12.9504
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.991312u
106
1.30501u
105
+ ··· 366.569u 745.449
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
107
11u
106
+ ··· u 1
c
3
, c
7
u
107
2u
106
+ ··· 512u + 512
c
5
u
107
+ 2u
106
+ ··· 10404u + 2312
c
6
, c
12
u
107
+ 3u
106
+ ··· 3u 1
c
8
, c
11
u
107
5u
106
+ ··· 5466u 289
c
9
17(17u
107
+ 96u
106
+ ··· 2.67194 × 10
8
u + 4.35330 × 10
7
)
c
10
17(17u
107
+ 61u
106
+ ··· + 4.98410 × 10
7
u 2813417)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
107
99y
106
+ ··· 29y 1
c
3
, c
7
y
107
54y
106
+ ··· + 7340032y 262144
c
5
y
107
18y
106
+ ··· + 277740560y 5345344
c
6
, c
12
y
107
+ 73y
106
+ ··· + 55y 1
c
8
, c
11
y
107
81y
106
+ ··· + 6093612y 83521
c
9
289(289y
107
19076y
106
+ ··· + 8.77063 × 10
16
y 1.89512 × 10
15
)
c
10
289
· (289y
107
7971y
106
+ ··· + 1153422073109755y 7915315215889)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.931265 + 0.406170I
a = 0.180524 + 0.102775I
b = 0.628756 + 1.070630I
2.30486 + 1.44330I 0
u = 0.931265 0.406170I
a = 0.180524 0.102775I
b = 0.628756 1.070630I
2.30486 1.44330I 0
u = 0.976707 + 0.115936I
a = 0.599235 + 0.941304I
b = 0.698962 0.236650I
3.84509 + 1.95256I 0
u = 0.976707 0.115936I
a = 0.599235 0.941304I
b = 0.698962 + 0.236650I
3.84509 1.95256I 0
u = 0.356416 + 0.955461I
a = 0.592799 + 0.220178I
b = 0.938545 + 0.461272I
1.66924 1.97469I 0
u = 0.356416 0.955461I
a = 0.592799 0.220178I
b = 0.938545 0.461272I
1.66924 + 1.97469I 0
u = 1.012720 + 0.132824I
a = 1.54325 + 0.67120I
b = 2.50954 + 0.63542I
7.33756 + 0.07613I 0
u = 1.012720 0.132824I
a = 1.54325 0.67120I
b = 2.50954 0.63542I
7.33756 0.07613I 0
u = 0.971497 + 0.327337I
a = 1.094850 + 0.029360I
b = 2.56859 + 0.95662I
2.56341 + 2.94691I 0
u = 0.971497 0.327337I
a = 1.094850 0.029360I
b = 2.56859 0.95662I
2.56341 2.94691I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.088254 + 0.953155I
a = 0.143294 + 1.178500I
b = 1.132480 0.334989I
4.79638 + 0.98699I 0
u = 0.088254 0.953155I
a = 0.143294 1.178500I
b = 1.132480 + 0.334989I
4.79638 0.98699I 0
u = 0.933039 + 0.143215I
a = 0.494644 1.048140I
b = 0.343321 1.127840I
3.78091 2.99219I 0
u = 0.933039 0.143215I
a = 0.494644 + 1.048140I
b = 0.343321 + 1.127840I
3.78091 + 2.99219I 0
u = 0.431800 + 0.976154I
a = 0.668560 0.913554I
b = 0.428460 + 0.364883I
3.77986 + 4.80948I 0
u = 0.431800 0.976154I
a = 0.668560 + 0.913554I
b = 0.428460 0.364883I
3.77986 4.80948I 0
u = 0.228518 + 0.892361I
a = 0.264082 + 0.338861I
b = 0.70974 + 1.40915I
4.76982 0.36186I 0
u = 0.228518 0.892361I
a = 0.264082 0.338861I
b = 0.70974 1.40915I
4.76982 + 0.36186I 0
u = 0.092471 + 1.078070I
a = 0.44549 + 1.54366I
b = 0.620069 + 0.456648I
9.17182 2.19773I 0
u = 0.092471 1.078070I
a = 0.44549 1.54366I
b = 0.620069 0.456648I
9.17182 + 2.19773I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.889247 + 0.203541I
a = 1.189030 + 0.430620I
b = 2.69411 0.64847I
2.97691 0.95326I 0
u = 0.889247 0.203541I
a = 1.189030 0.430620I
b = 2.69411 + 0.64847I
2.97691 + 0.95326I 0
u = 0.242919 + 0.867268I
a = 0.10892 1.53983I
b = 0.090572 + 0.409338I
4.39157 8.45275I 0
u = 0.242919 0.867268I
a = 0.10892 + 1.53983I
b = 0.090572 0.409338I
4.39157 + 8.45275I 0
u = 1.061410 + 0.301435I
a = 1.53828 0.25745I
b = 2.67895 + 0.02396I
6.91732 4.41662I 0
u = 1.061410 0.301435I
a = 1.53828 + 0.25745I
b = 2.67895 0.02396I
6.91732 + 4.41662I 0
u = 0.304573 + 1.063250I
a = 0.997292 + 0.520611I
b = 1.080310 + 0.440969I
5.05564 + 5.39819I 0
u = 0.304573 1.063250I
a = 0.997292 0.520611I
b = 1.080310 0.440969I
5.05564 5.39819I 0
u = 0.870663 + 0.176776I
a = 0.973907 + 0.679642I
b = 0.531737 0.185116I
0.72189 + 2.74860I 0
u = 0.870663 0.176776I
a = 0.973907 0.679642I
b = 0.531737 + 0.185116I
0.72189 2.74860I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.015450 + 0.504665I
a = 0.241834 0.639622I
b = 0.171049 0.300765I
1.09835 3.92237I 0
u = 1.015450 0.504665I
a = 0.241834 + 0.639622I
b = 0.171049 + 0.300765I
1.09835 + 3.92237I 0
u = 0.526835 + 0.664073I
a = 0.813713 + 0.084744I
b = 0.649668 + 0.235899I
2.60177 0.62792I 0
u = 0.526835 0.664073I
a = 0.813713 0.084744I
b = 0.649668 0.235899I
2.60177 + 0.62792I 0
u = 1.076720 + 0.464977I
a = 0.552748 0.958127I
b = 0.796377 0.842288I
2.37272 + 7.54825I 0
u = 1.076720 0.464977I
a = 0.552748 + 0.958127I
b = 0.796377 + 0.842288I
2.37272 7.54825I 0
u = 0.733065 + 0.330340I
a = 0.064198 0.514775I
b = 0.374792 0.363000I
0.769990 0.237218I 8.00000 1.04777I
u = 0.733065 0.330340I
a = 0.064198 + 0.514775I
b = 0.374792 + 0.363000I
0.769990 + 0.237218I 8.00000 + 1.04777I
u = 0.716753 + 0.360053I
a = 1.124690 + 0.448670I
b = 3.46273 0.61131I
3.50386 1.66896I 16.6348 15.7652I
u = 0.716753 0.360053I
a = 1.124690 0.448670I
b = 3.46273 + 0.61131I
3.50386 + 1.66896I 16.6348 + 15.7652I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.092779 + 0.786586I
a = 0.268044 1.184120I
b = 0.075212 + 0.508676I
0.99398 + 2.92097I 2.14055 8.38546I
u = 0.092779 0.786586I
a = 0.268044 + 1.184120I
b = 0.075212 0.508676I
0.99398 2.92097I 2.14055 + 8.38546I
u = 0.758308 + 0.133029I
a = 0.372777 + 0.723023I
b = 0.63345 + 1.29744I
3.58750 + 2.31232I 15.8918 2.7555I
u = 0.758308 0.133029I
a = 0.372777 0.723023I
b = 0.63345 1.29744I
3.58750 2.31232I 15.8918 + 2.7555I
u = 0.722730 + 0.161926I
a = 1.58847 + 0.40979I
b = 0.337724 0.130488I
5.80226 7.40735I 18.9937 + 9.1512I
u = 0.722730 0.161926I
a = 1.58847 0.40979I
b = 0.337724 + 0.130488I
5.80226 + 7.40735I 18.9937 9.1512I
u = 1.232030 + 0.307377I
a = 0.310429 + 0.667179I
b = 0.154826 0.286118I
6.76847 1.51759I 0
u = 1.232030 0.307377I
a = 0.310429 0.667179I
b = 0.154826 + 0.286118I
6.76847 + 1.51759I 0
u = 0.393537 + 0.609625I
a = 1.165490 + 0.721828I
b = 0.669946 + 0.274768I
0.31883 3.28324I 5.60431 + 3.66597I
u = 0.393537 0.609625I
a = 1.165490 0.721828I
b = 0.669946 0.274768I
0.31883 + 3.28324I 5.60431 3.66597I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.212990 + 0.397926I
a = 0.623595 + 0.309847I
b = 0.39774 2.98122I
8.99268 + 4.16407I 0
u = 1.212990 0.397926I
a = 0.623595 0.309847I
b = 0.39774 + 2.98122I
8.99268 4.16407I 0
u = 1.242800 + 0.298457I
a = 1.168920 + 0.075796I
b = 2.89703 + 0.03063I
9.14754 8.24261I 0
u = 1.242800 0.298457I
a = 1.168920 0.075796I
b = 2.89703 0.03063I
9.14754 + 8.24261I 0
u = 0.141063 + 1.304170I
a = 0.115873 0.757239I
b = 0.172892 + 0.880125I
1.38178 + 2.91494I 0
u = 0.141063 1.304170I
a = 0.115873 + 0.757239I
b = 0.172892 0.880125I
1.38178 2.91494I 0
u = 1.204720 + 0.538302I
a = 0.224257 0.099675I
b = 0.245011 + 1.036330I
7.84058 4.80609I 0
u = 1.204720 0.538302I
a = 0.224257 + 0.099675I
b = 0.245011 1.036330I
7.84058 + 4.80609I 0
u = 1.309760 + 0.270121I
a = 0.371792 + 1.058620I
b = 0.086820 + 0.488872I
10.74750 1.26365I 0
u = 1.309760 0.270121I
a = 0.371792 1.058620I
b = 0.086820 0.488872I
10.74750 + 1.26365I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.271700 + 0.434265I
a = 0.883155 0.416545I
b = 2.30508 0.40191I
8.58798 + 4.36356I 0
u = 1.271700 0.434265I
a = 0.883155 + 0.416545I
b = 2.30508 + 0.40191I
8.58798 4.36356I 0
u = 1.275970 + 0.428836I
a = 0.870350 + 0.396090I
b = 2.57554 0.73466I
9.07128 + 3.71874I 0
u = 1.275970 0.428836I
a = 0.870350 0.396090I
b = 2.57554 + 0.73466I
9.07128 3.71874I 0
u = 0.441267 + 1.276080I
a = 0.010079 1.136560I
b = 0.075031 + 0.587350I
10.4011 + 11.2730I 0
u = 0.441267 1.276080I
a = 0.010079 + 1.136560I
b = 0.075031 0.587350I
10.4011 11.2730I 0
u = 1.230600 + 0.564328I
a = 1.137020 0.087814I
b = 2.86197 0.20383I
7.4189 + 13.7965I 0
u = 1.230600 0.564328I
a = 1.137020 + 0.087814I
b = 2.86197 + 0.20383I
7.4189 13.7965I 0
u = 1.323420 + 0.286711I
a = 0.914417 0.024510I
b = 2.58390 + 0.00153I
4.18081 + 2.37986I 0
u = 1.323420 0.286711I
a = 0.914417 + 0.024510I
b = 2.58390 0.00153I
4.18081 2.37986I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.278700 + 0.503687I
a = 0.908905 + 0.010734I
b = 2.44601 + 0.82010I
8.52536 6.22901I 0
u = 1.278700 0.503687I
a = 0.908905 0.010734I
b = 2.44601 0.82010I
8.52536 + 6.22901I 0
u = 1.232670 + 0.616020I
a = 0.285190 0.632161I
b = 0.364306 0.134856I
4.44227 + 7.78550I 0
u = 1.232670 0.616020I
a = 0.285190 + 0.632161I
b = 0.364306 + 0.134856I
4.44227 7.78550I 0
u = 1.267260 + 0.549056I
a = 0.938331 0.109314I
b = 2.60437 0.08018I
2.55413 8.13238I 0
u = 1.267260 0.549056I
a = 0.938331 + 0.109314I
b = 2.60437 + 0.08018I
2.55413 + 8.13238I 0
u = 0.613234
a = 0.343678
b = 0.360765
0.940432 9.73200
u = 0.429164 + 1.329720I
a = 0.068472 0.921024I
b = 0.098161 + 0.749867I
5.51395 5.51248I 0
u = 0.429164 1.329720I
a = 0.068472 + 0.921024I
b = 0.098161 0.749867I
5.51395 + 5.51248I 0
u = 0.397402 + 0.438020I
a = 1.19302 + 1.61741I
b = 0.57156 + 4.09559I
5.90093 0.77524I 7.20009 8.79210I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.397402 0.438020I
a = 1.19302 1.61741I
b = 0.57156 4.09559I
5.90093 + 0.77524I 7.20009 + 8.79210I
u = 1.349340 + 0.415520I
a = 1.217360 + 0.693262I
b = 2.01551 + 0.42109I
13.9537 2.9601I 0
u = 1.349340 0.415520I
a = 1.217360 0.693262I
b = 2.01551 0.42109I
13.9537 + 2.9601I 0
u = 1.27824 + 0.62370I
a = 0.527044 0.887663I
b = 0.860085 0.585152I
8.16809 11.50410I 0
u = 1.27824 0.62370I
a = 0.527044 + 0.887663I
b = 0.860085 + 0.585152I
8.16809 + 11.50410I 0
u = 0.288463 + 0.497708I
a = 0.665687 0.559774I
b = 0.203916 + 0.598819I
0.62747 + 1.89102I 3.97049 2.88595I
u = 0.288463 0.497708I
a = 0.665687 + 0.559774I
b = 0.203916 0.598819I
0.62747 1.89102I 3.97049 + 2.88595I
u = 1.33200 + 0.52311I
a = 1.312210 0.185097I
b = 2.36998 + 0.15644I
13.1732 + 7.9062I 0
u = 1.33200 0.52311I
a = 1.312210 + 0.185097I
b = 2.36998 0.15644I
13.1732 7.9062I 0
u = 0.55234 + 1.32267I
a = 0.388265 0.819153I
b = 0.481113 + 0.580917I
9.67010 1.15397I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.55234 1.32267I
a = 0.388265 + 0.819153I
b = 0.481113 0.580917I
9.67010 + 1.15397I 0
u = 1.29769 + 0.65667I
a = 0.767810 0.380695I
b = 2.13616 0.22858I
6.46600 + 1.47782I 0
u = 1.29769 0.65667I
a = 0.767810 + 0.380695I
b = 2.13616 + 0.22858I
6.46600 1.47782I 0
u = 1.31949 + 0.75319I
a = 1.044930 0.147670I
b = 2.73164 0.27623I
13.2708 18.4610I 0
u = 1.31949 0.75319I
a = 1.044930 + 0.147670I
b = 2.73164 + 0.27623I
13.2708 + 18.4610I 0
u = 1.34268 + 0.75552I
a = 0.894702 0.162317I
b = 2.54796 0.12017I
8.5253 + 12.8531I 0
u = 1.34268 0.75552I
a = 0.894702 + 0.162317I
b = 2.54796 + 0.12017I
8.5253 12.8531I 0
u = 0.399946 + 0.214162I
a = 1.30736 + 1.02540I
b = 0.415975 + 0.038938I
1.063250 0.043134I 7.94611 1.24147I
u = 0.399946 0.214162I
a = 1.30736 1.02540I
b = 0.415975 0.038938I
1.063250 + 0.043134I 7.94611 + 1.24147I
u = 0.149223 + 0.396575I
a = 0.01530 + 3.13817I
b = 0.294661 + 0.448912I
4.49140 + 1.51008I 9.81598 1.55694I
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.149223 0.396575I
a = 0.01530 3.13817I
b = 0.294661 0.448912I
4.49140 1.51008I 9.81598 + 1.55694I
u = 1.35595 + 0.81241I
a = 0.749963 0.331925I
b = 2.15867 0.11610I
12.32240 6.52710I 0
u = 1.35595 0.81241I
a = 0.749963 + 0.331925I
b = 2.15867 + 0.11610I
12.32240 + 6.52710I 0
u = 1.61146 + 0.03604I
a = 0.948244 0.190754I
b = 2.56392 0.11689I
18.4193 6.1353I 0
u = 1.61146 0.03604I
a = 0.948244 + 0.190754I
b = 2.56392 + 0.11689I
18.4193 + 6.1353I 0
u = 1.65879
a = 0.839440
b = 2.53074
13.8071 0
u = 0.315785
a = 2.96408
b = 4.94665
3.02083 69.6120
15
II. I
u
2
= h22u
2
+ 17b + 2u + 40, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
u
2
+ u 2
22
17
u
2
2
17
u
40
17
a
9
=
u
2
+ u 2
22
17
u
2
+
15
17
u
40
17
a
12
=
0
u
a
7
=
u
u
a
10
=
14
17
u
2
+
8
17
u
27
17
19
17
u
2
+
6
17
u
33
17
a
6
=
u
u
2
u + 1
a
1
=
u
2
+ 2u 1
u
2
2u
a
5
=
u
u
2
u + 1
a
2
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2667
289
u
2
10925
289
u +
2721
289
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
3
+ u
2
1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
u
3
c
6
u
3
3u
2
+ 2u + 1
c
7
u
3
+ u
2
+ 2u + 1
c
8
(u 1)
3
c
9
17(17u
3
+ 10u
2
u 1)
c
10
17(17u
3
23u
2
+ 8u 1)
c
11
(u + 1)
3
c
12
u
3
+ 3u
2
+ 2u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
3
y
2
+ 2y 1
c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
5
y
3
c
6
, c
12
y
3
5y
2
+ 10y 1
c
8
, c
11
(y 1)
3
c
9
289(289y
3
134y
2
+ 21y 1)
c
10
289(289y
3
257y
2
+ 18y 1)
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 0.226957 0.881437I
1.37919 2.82812I 14.0563 44.2246I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 0.226957 + 0.881437I
1.37919 + 2.82812I 14.0563 + 44.2246I
u = 0.569840
a = 1.75488
b = 2.84020
2.75839 9.12970
19
III.
I
v
1
= ha, 14536v
8
+ 40690v
7
+ · · · + 11959b + 36034, v
9
+ 3v
8
+ · · · + 3v + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
v
0
a
4
=
1
0
a
11
=
0
1.21549v
8
3.40246v
7
+ ··· 0.204281v 3.01313
a
9
=
v
0.917468v
8
2.75040v
7
+ ··· 1.68777v 2.76913
a
12
=
0.298018v
8
+ 0.652061v
7
+ ··· 0.483485v + 0.244000
0.705410v
8
1.67138v
7
+ ··· + 2.87842v 0.490008
a
7
=
v
0
a
10
=
0.109374v
8
+ 0.367255v
7
+ ··· + 0.0885526v + 0.00200686
0.917468v
8
2.75040v
7
+ ··· 1.68777v 2.76913
a
6
=
0.120495v
8
0.294506v
7
+ ··· + 0.670792v + 0.0803579
0.198846v
8
+ 0.759428v
7
+ ··· + 1.00962v 0.427544
a
1
=
0.244000v
8
0.433983v
7
+ ··· 0.633331v 0.215486
1
a
5
=
0.244000v
8
+ 0.433983v
7
+ ··· + 0.633331v + 0.215486
1
a
2
=
0.244000v
8
0.433983v
7
+ ··· 0.633331v + 0.784514
1
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
30669
11959
v
8
+
76868
11959
v
7
100871
11959
v
6
237835
11959
v
5
+
437462
11959
v
4
+
579948
11959
v
3
66654
11959
v
2
147944
11959
v
72837
11959
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
, c
10
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
6
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
8
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
9
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
11
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
12
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
8
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.924205 + 0.223068I
a = 0
b = 0.037875 + 0.791187I
2.26187 + 2.45442I 8.53903 2.82066I
v = 0.924205 0.223068I
a = 0
b = 0.037875 0.791187I
2.26187 2.45442I 8.53903 + 2.82066I
v = 0.295822 + 0.390531I
a = 0
b = 0.80973 2.39258I
6.01628 + 1.33617I 16.4774 4.4812I
v = 0.295822 0.390531I
a = 0
b = 0.80973 + 2.39258I
6.01628 1.33617I 16.4774 + 4.4812I
v = 0.280601
a = 0
b = 2.94345
2.84338 3.87310
v = 1.47927 + 0.93319I
a = 0
b = 0.218072 + 0.482572I
0.13850 + 2.09337I 6.02684 1.69698I
v = 1.47927 0.93319I
a = 0
b = 0.218072 0.482572I
0.13850 2.09337I 6.02684 + 1.69698I
v = 2.21059 + 0.69487I
a = 0
b = 0.417942 + 0.357732I
5.24306 7.08493I 9.02021 + 2.94778I
v = 2.21059 0.69487I
a = 0
b = 0.417942 0.357732I
5.24306 + 7.08493I 9.02021 2.94778I
23
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
9
)(u
3
+ u
2
1)(u
107
11u
106
+ ··· u 1)
c
3
u
9
(u
3
u
2
+ 2u 1)(u
107
2u
106
+ ··· 512u + 512)
c
4
((u + 1)
9
)(u
3
u
2
+ 1)(u
107
11u
106
+ ··· u 1)
c
5
u
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
107
+ 2u
106
+ ··· 10404u + 2312)
c
6
(u
3
3u
2
+ 2u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
107
+ 3u
106
+ ··· 3u 1)
c
7
u
9
(u
3
+ u
2
+ 2u + 1)(u
107
2u
106
+ ··· 512u + 512)
c
8
(u 1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
107
5u
106
+ ··· 5466u 289)
c
9
289(17u
3
+ 10u
2
u 1)
· (u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
· (17u
107
+ 96u
106
+ ··· 267194040u + 43532959)
c
10
289(17u
3
23u
2
+ 8u 1)(u
9
+ u
8
+ ··· + u 1)
· (17u
107
+ 61u
106
+ ··· + 49840983u 2813417)
c
11
(u + 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
107
5u
106
+ ··· 5466u 289)
c
12
(u
3
+ 3u
2
+ 2u 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
107
+ 3u
106
+ ··· 3u 1)
24
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
9
)(y
3
y
2
+ 2y 1)(y
107
99y
106
+ ··· 29y 1)
c
3
, c
7
y
9
(y
3
+ 3y
2
+ 2y 1)(y
107
54y
106
+ ··· + 7340032y 262144)
c
5
y
3
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
107
18y
106
+ ··· + 277740560y 5345344)
c
6
, c
12
(y
3
5y
2
+ 10y 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
107
+ 73y
106
+ ··· + 55y 1)
c
8
, c
11
(y 1)
3
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
107
81y
106
+ ··· + 6093612y 83521)
c
9
83521(289y
3
134y
2
+ 21y 1)
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (289y
107
1.91 × 10
4
y
106
+ ··· + 8.77 × 10
16
y 1.90 × 10
15
)
c
10
83521(289y
3
257y
2
+ 18y 1)
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (289y
107
7971y
106
+ ··· + 1153422073109755y 7915315215889)
25