12a
0835
(K12a
0835
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 11 12 3 1 6 7 8
Solving Sequence
7,11
12
3,8
9 4 1 6 10 5 2
c
11
c
7
c
8
c
3
c
12
c
6
c
10
c
5
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
37
+ 76u
35
+ ··· + b + 1, 2u
37
+ u
36
+ ··· + a 3, u
38
+ 2u
37
+ ··· 4u 1i
I
u
2
= hu
2
+ b 1, a 1, u
3
u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3u
37
+76u
35
+· · ·+b+1, 2u
37
+u
36
+· · ·+a3, u
38
+2u
37
+· · ·4u1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
2u
37
u
36
+ ··· 15u
2
+ 3
3u
37
76u
35
+ ··· 6u 1
a
8
=
u
u
3
+ u
a
9
=
u
8
5u
6
+ 7u
4
4u
2
+ 1
u
10
+ 6u
8
11u
6
+ 6u
4
+ u
2
a
4
=
u
36
+ 25u
34
+ ··· u + 2
u
37
+ 26u
35
+ ··· + u + 1
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
u
a
10
=
u
2
+ 1
u
2
a
5
=
u
3
2u
u
3
+ u
a
2
=
u
37
u
36
+ ··· u + 3
u
37
25u
35
+ ··· + u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
37
+ 4u
36
+ ··· + 31u 7
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
38
4u
37
+ ··· u 1
c
3
, c
8
u
38
+ u
37
+ ··· + 12u + 8
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
38
+ 2u
37
+ ··· 4u 1
c
9
u
38
6u
37
+ ··· 476u + 55
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
38
36y
37
+ ··· + 35y + 1
c
3
, c
8
y
38
21y
37
+ ··· 848y + 64
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
38
54y
37
+ ··· 28y + 1
c
9
y
38
+ 6y
37
+ ··· 132856y + 3025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.879915 + 0.280083I
a = 0.422412 + 0.001593I
b = 1.259570 + 0.041859I
4.46594 0.62155I 1.23906 1.00554I
u = 0.879915 0.280083I
a = 0.422412 0.001593I
b = 1.259570 0.041859I
4.46594 + 0.62155I 1.23906 + 1.00554I
u = 1.107830 + 0.111217I
a = 1.127560 + 0.838416I
b = 0.893007 0.188118I
2.67127 + 0.72425I 3.65418 0.86134I
u = 1.107830 0.111217I
a = 1.127560 0.838416I
b = 0.893007 + 0.188118I
2.67127 0.72425I 3.65418 + 0.86134I
u = 1.132560 + 0.171155I
a = 0.264697 1.114460I
b = 0.795265 0.506019I
1.45072 3.23668I 4.64812 + 3.17787I
u = 1.132560 0.171155I
a = 0.264697 + 1.114460I
b = 0.795265 + 0.506019I
1.45072 + 3.23668I 4.64812 3.17787I
u = 1.174750 + 0.191050I
a = 0.51302 1.48671I
b = 0.349369 + 0.196389I
4.18688 + 5.41975I 6.64086 6.14271I
u = 1.174750 0.191050I
a = 0.51302 + 1.48671I
b = 0.349369 0.196389I
4.18688 5.41975I 6.64086 + 6.14271I
u = 1.211660 + 0.074429I
a = 0.357902 + 0.705905I
b = 0.289689 + 0.133201I
6.39460 0.99370I 11.55440 + 0.I
u = 1.211660 0.074429I
a = 0.357902 0.705905I
b = 0.289689 0.133201I
6.39460 + 0.99370I 11.55440 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.201030 + 0.253869I
a = 0.05721 + 1.56031I
b = 0.060414 + 0.164516I
1.60053 + 9.43906I 3.22111 6.40713I
u = 1.201030 0.253869I
a = 0.05721 1.56031I
b = 0.060414 0.164516I
1.60053 9.43906I 3.22111 + 6.40713I
u = 0.477067 + 0.497622I
a = 0.243665 + 0.668012I
b = 0.819079 1.087840I
6.95978 6.84371I 0.65587 + 7.18457I
u = 0.477067 0.497622I
a = 0.243665 0.668012I
b = 0.819079 + 1.087840I
6.95978 + 6.84371I 0.65587 7.18457I
u = 1.36368
a = 1.08623
b = 0.216111
3.27250 0
u = 0.423369 + 0.400375I
a = 0.726383 0.423149I
b = 0.291431 + 0.956910I
0.93228 3.40297I 2.14199 + 8.41753I
u = 0.423369 0.400375I
a = 0.726383 + 0.423149I
b = 0.291431 0.956910I
0.93228 + 3.40297I 2.14199 8.41753I
u = 0.195413 + 0.544437I
a = 1.31438 1.37135I
b = 0.069081 0.125786I
7.79779 + 3.42232I 3.36452 0.77365I
u = 0.195413 0.544437I
a = 1.31438 + 1.37135I
b = 0.069081 + 0.125786I
7.79779 3.42232I 3.36452 + 0.77365I
u = 0.341654 + 0.397148I
a = 1.48910 0.45750I
b = 0.079740 + 0.997605I
3.23774 + 1.34870I 0.24766 4.74966I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341654 0.397148I
a = 1.48910 + 0.45750I
b = 0.079740 0.997605I
3.23774 1.34870I 0.24766 + 4.74966I
u = 0.477554 + 0.133920I
a = 0.643576 + 0.290655I
b = 0.342626 0.376975I
0.891274 + 0.223442I 10.83666 1.68176I
u = 0.477554 0.133920I
a = 0.643576 0.290655I
b = 0.342626 + 0.376975I
0.891274 0.223442I 10.83666 + 1.68176I
u = 0.229708 + 0.385709I
a = 1.41072 + 0.84547I
b = 0.063553 0.396538I
1.49424 + 0.71629I 1.75673 + 0.24825I
u = 0.229708 0.385709I
a = 1.41072 0.84547I
b = 0.063553 + 0.396538I
1.49424 0.71629I 1.75673 0.24825I
u = 1.70748
a = 0.768656
b = 0.625166
4.46722 0
u = 0.234823
a = 2.58144
b = 0.732163
1.29292 12.5790
u = 1.76514 + 0.02788I
a = 0.56054 1.49467I
b = 1.66540 + 3.03614I
13.15060 1.31489I 0
u = 1.76514 0.02788I
a = 0.56054 + 1.49467I
b = 1.66540 3.03614I
13.15060 + 1.31489I 0
u = 1.76796 + 0.04114I
a = 0.92517 + 2.50893I
b = 1.34181 4.80741I
12.00080 + 4.13178I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.76796 0.04114I
a = 0.92517 2.50893I
b = 1.34181 + 4.80741I
12.00080 4.13178I 0
u = 1.77750 + 0.04775I
a = 0.01149 + 2.45709I
b = 0.24659 4.97450I
14.9410 6.4586I 0
u = 1.77750 0.04775I
a = 0.01149 2.45709I
b = 0.24659 + 4.97450I
14.9410 + 6.4586I 0
u = 1.78301 + 0.06547I
a = 0.63670 2.77800I
b = 1.33294 + 5.47020I
9.2442 10.8528I 0
u = 1.78301 0.06547I
a = 0.63670 + 2.77800I
b = 1.33294 5.47020I
9.2442 + 10.8528I 0
u = 1.78759 + 0.01827I
a = 0.73970 1.68325I
b = 1.31660 + 3.30669I
17.4040 + 1.4058I 0
u = 1.78759 0.01827I
a = 0.73970 + 1.68325I
b = 1.31660 3.30669I
17.4040 1.4058I 0
u = 1.82025
a = 1.74840
b = 3.59779
15.0989 0
8
II. I
u
2
= hu
2
+ b 1, a 1, u
3
u
2
2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
1
u
2
+ 1
a
8
=
u
u
2
u + 1
a
9
=
u
u
2
u + 1
a
4
=
1
u
2
+ 1
a
1
=
u
2
+ 1
u
2
+ u 1
a
6
=
u
u
a
10
=
u
2
+ 1
u
2
a
5
=
u
2
1
u
2
u + 1
a
2
=
u
2
+ 2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ u + 11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
c
9
u
3
+ u
2
2u 1
c
10
, c
11
, c
12
u
3
u
2
2u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
8
y
3
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24698
a = 1.00000
b = 0.554958
4.69981 8.19810
u = 0.445042
a = 1.00000
b = 0.801938
0.939962 11.2470
u = 1.80194
a = 1.00000
b = 2.24698
15.9794 9.55500
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
3
)(u
38
4u
37
+ ··· u 1)
c
3
, c
8
u
3
(u
38
+ u
37
+ ··· + 12u + 8)
c
4
((u + 1)
3
)(u
38
4u
37
+ ··· u 1)
c
5
, c
6
, c
7
(u
3
+ u
2
2u 1)(u
38
+ 2u
37
+ ··· 4u 1)
c
9
(u
3
+ u
2
2u 1)(u
38
6u
37
+ ··· 476u + 55)
c
10
, c
11
, c
12
(u
3
u
2
2u + 1)(u
38
+ 2u
37
+ ··· 4u 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
3
)(y
38
36y
37
+ ··· + 35y + 1)
c
3
, c
8
y
3
(y
38
21y
37
+ ··· 848y + 64)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y
3
5y
2
+ 6y 1)(y
38
54y
37
+ ··· 28y + 1)
c
9
(y
3
5y
2
+ 6y 1)(y
38
+ 6y
37
+ ··· 132856y + 3025)
14