12a
0836
(K12a
0836
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 11 12 3 1 6 8 7
Solving Sequence
1,7
12
3,8
9 4 10 11 6 5 2
c
12
c
7
c
8
c
3
c
9
c
11
c
6
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
65
+ u
64
+ ··· + b + 2u, u
65
u
64
+ ··· + a 2, u
68
2u
67
+ ··· + 2u + 1i
I
u
2
= hb 1, u
4
u
3
2u
2
+ a u, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
65
+u
64
+· · ·+b+2u, u
65
u
64
+· · ·+a2, u
68
2u
67
+· · ·+2u+1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
12
=
1
u
2
a
3
=
u
65
+ u
64
+ ··· 3u + 2
u
65
u
64
+ ··· + 7u
2
2u
a
8
=
u
u
3
+ u
a
9
=
u
10
+ 3u
8
+ 2u
6
3u
4
3u
2
+ 1
u
10
4u
8
5u
6
+ 3u
2
a
4
=
u
65
u
64
+ ··· 4u + 1
u
65
u
64
+ ··· + 4u
2
3u
a
10
=
u
8
3u
6
3u
4
+ 1
u
10
4u
8
5u
6
+ 3u
2
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
5
=
u
11
+ 4u
9
+ 6u
7
+ 2u
5
3u
3
2u
u
13
+ 5u
11
+ 9u
9
+ 4u
7
6u
5
5u
3
+ u
a
2
=
u
63
u
62
+ ··· 4u + 2
u
65
u
64
+ ··· + 5u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
67
+ 8u
66
+ ··· + 36u 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
68
7u
67
+ ··· + 3u 1
c
3
, c
8
u
68
+ u
67
+ ··· 128u 64
c
5
, c
6
, c
10
u
68
+ 2u
67
+ ··· + 172u + 17
c
7
, c
11
, c
12
u
68
2u
67
+ ··· + 2u + 1
c
9
u
68
6u
67
+ ··· + 19512u 3344
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
68
65y
67
+ ··· + 29y + 1
c
3
, c
8
y
68
39y
67
+ ··· 53248y + 4096
c
5
, c
6
, c
10
y
68
66y
67
+ ··· 5682y + 289
c
7
, c
11
, c
12
y
68
+ 54y
67
+ ··· 26y + 1
c
9
y
68
+ 18y
67
+ ··· 465943328y + 11182336
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.274868 + 1.060340I
a = 0.526754 0.257503I
b = 0.172316 + 0.844015I
7.01631 + 3.93719I 0
u = 0.274868 1.060340I
a = 0.526754 + 0.257503I
b = 0.172316 0.844015I
7.01631 3.93719I 0
u = 0.895864
a = 0.191061
b = 0.633345
4.93401 0.595830
u = 0.096240 + 1.118240I
a = 0.850399 0.314781I
b = 0.471781 0.369891I
1.83195 + 1.81972I 0
u = 0.096240 1.118240I
a = 0.850399 + 0.314781I
b = 0.471781 + 0.369891I
1.83195 1.81972I 0
u = 0.869205 + 0.074527I
a = 1.315300 + 0.517853I
b = 0.83012 + 1.96876I
0.59482 + 10.16420I 1.87647 5.92631I
u = 0.869205 0.074527I
a = 1.315300 0.517853I
b = 0.83012 1.96876I
0.59482 10.16420I 1.87647 + 5.92631I
u = 0.861015 + 0.021460I
a = 0.068130 0.155149I
b = 0.310712 + 0.559057I
7.57123 1.21218I 9.68961 + 0.94684I
u = 0.861015 0.021460I
a = 0.068130 + 0.155149I
b = 0.310712 0.559057I
7.57123 + 1.21218I 9.68961 0.94684I
u = 0.856269 + 0.057784I
a = 1.47487 0.56535I
b = 1.22357 1.80577I
5.18799 + 5.94447I 5.15329 5.45502I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.856269 0.057784I
a = 1.47487 + 0.56535I
b = 1.22357 + 1.80577I
5.18799 5.94447I 5.15329 + 5.45502I
u = 0.842334 + 0.053972I
a = 0.054941 + 0.246831I
b = 0.457743 0.884595I
2.36110 3.67346I 3.13855 + 2.67186I
u = 0.842334 0.053972I
a = 0.054941 0.246831I
b = 0.457743 + 0.884595I
2.36110 + 3.67346I 3.13855 2.67186I
u = 0.832992 + 0.037249I
a = 1.70552 + 0.38792I
b = 1.61773 + 1.11342I
3.56303 + 1.00362I 2.39038 0.55408I
u = 0.832992 0.037249I
a = 1.70552 0.38792I
b = 1.61773 1.11342I
3.56303 1.00362I 2.39038 + 0.55408I
u = 0.039755 + 1.193740I
a = 1.47104 + 1.52287I
b = 1.210760 0.091966I
4.53839 0.93955I 0
u = 0.039755 1.193740I
a = 1.47104 1.52287I
b = 1.210760 + 0.091966I
4.53839 + 0.93955I 0
u = 0.726273 + 0.104581I
a = 1.340580 0.221368I
b = 0.223564 0.553926I
4.17485 0.25355I 0.106562 0.720449I
u = 0.726273 0.104581I
a = 1.340580 + 0.221368I
b = 0.223564 + 0.553926I
4.17485 + 0.25355I 0.106562 + 0.720449I
u = 0.139307 + 1.264580I
a = 0.387719 + 0.377472I
b = 0.052113 0.152925I
3.21418 + 2.27728I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.139307 1.264580I
a = 0.387719 0.377472I
b = 0.052113 + 0.152925I
3.21418 2.27728I 0
u = 0.420834 + 1.201420I
a = 1.004800 + 0.249172I
b = 0.82821 1.85021I
4.06146 5.54434I 0
u = 0.420834 1.201420I
a = 1.004800 0.249172I
b = 0.82821 + 1.85021I
4.06146 + 5.54434I 0
u = 0.385541 + 1.220900I
a = 1.264540 0.576743I
b = 0.601184 + 0.839021I
1.23320 0.73928I 0
u = 0.385541 1.220900I
a = 1.264540 + 0.576743I
b = 0.601184 0.839021I
1.23320 + 0.73928I 0
u = 0.402134 + 1.217770I
a = 1.050320 + 0.234054I
b = 1.21789 + 1.63529I
1.61428 1.42992I 0
u = 0.402134 1.217770I
a = 1.050320 0.234054I
b = 1.21789 1.63529I
1.61428 + 1.42992I 0
u = 0.376637 + 1.240150I
a = 0.656599 1.012060I
b = 1.64633 0.88359I
0.15109 + 3.34387I 0
u = 0.376637 1.240150I
a = 0.656599 + 1.012060I
b = 1.64633 + 0.88359I
0.15109 3.34387I 0
u = 0.402053 + 1.254660I
a = 0.816153 + 0.355455I
b = 0.409003 0.522193I
3.75268 3.31527I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.402053 1.254660I
a = 0.816153 0.355455I
b = 0.409003 + 0.522193I
3.75268 + 3.31527I 0
u = 0.104897 + 1.326030I
a = 0.59543 + 3.16636I
b = 0.56443 1.71708I
6.63847 0.67362I 0
u = 0.104897 1.326030I
a = 0.59543 3.16636I
b = 0.56443 + 1.71708I
6.63847 + 0.67362I 0
u = 0.126734 + 1.333640I
a = 0.924830 0.807120I
b = 0.106274 + 0.311282I
8.45190 + 3.15667I 0
u = 0.126734 1.333640I
a = 0.924830 + 0.807120I
b = 0.106274 0.311282I
8.45190 3.15667I 0
u = 0.146516 + 1.332920I
a = 0.99913 3.23738I
b = 0.36801 + 1.96714I
6.11073 5.54221I 0
u = 0.146516 1.332920I
a = 0.99913 + 3.23738I
b = 0.36801 1.96714I
6.11073 + 5.54221I 0
u = 0.427740 + 1.279080I
a = 0.709037 + 0.446061I
b = 0.629160 0.054561I
0.96243 4.73147I 0
u = 0.427740 1.279080I
a = 0.709037 0.446061I
b = 0.629160 + 0.054561I
0.96243 + 4.73147I 0
u = 0.396517 + 1.289790I
a = 0.091140 0.825123I
b = 0.217786 + 0.572163I
3.48887 5.72199I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.396517 1.289790I
a = 0.091140 + 0.825123I
b = 0.217786 0.572163I
3.48887 + 5.72199I 0
u = 0.375212 + 1.299320I
a = 0.99882 2.11483I
b = 1.59088 + 1.31222I
0.60813 + 5.34727I 0
u = 0.375212 1.299320I
a = 0.99882 + 2.11483I
b = 1.59088 1.31222I
0.60813 5.34727I 0
u = 0.325026 + 1.312790I
a = 1.12164 + 1.07523I
b = 0.598332 0.646888I
8.57365 + 3.57514I 0
u = 0.325026 1.312790I
a = 1.12164 1.07523I
b = 0.598332 + 0.646888I
8.57365 3.57514I 0
u = 0.355477 + 0.540754I
a = 1.56452 0.66386I
b = 0.109402 + 1.371900I
7.83604 + 3.56277I 3.48429 0.26987I
u = 0.355477 0.540754I
a = 1.56452 + 0.66386I
b = 0.109402 1.371900I
7.83604 3.56277I 3.48429 + 0.26987I
u = 0.536593 + 0.355337I
a = 1.184830 + 0.517192I
b = 0.32245 1.66008I
7.14400 6.91551I 1.34390 + 7.27933I
u = 0.536593 0.355337I
a = 1.184830 0.517192I
b = 0.32245 + 1.66008I
7.14400 + 6.91551I 1.34390 7.27933I
u = 0.380136 + 1.310130I
a = 0.137470 + 1.319400I
b = 0.338862 0.902883I
1.90173 8.06695I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.380136 1.310130I
a = 0.137470 1.319400I
b = 0.338862 + 0.902883I
1.90173 + 8.06695I 0
u = 0.076307 + 1.363730I
a = 0.76099 2.76851I
b = 0.28084 + 1.50736I
13.64730 + 2.32372I 0
u = 0.076307 1.363730I
a = 0.76099 + 2.76851I
b = 0.28084 1.50736I
13.64730 2.32372I 0
u = 0.165622 + 1.358730I
a = 1.04285 + 3.06303I
b = 0.23955 1.93117I
12.5196 9.3121I 0
u = 0.165622 1.358730I
a = 1.04285 3.06303I
b = 0.23955 + 1.93117I
12.5196 + 9.3121I 0
u = 0.388285 + 1.314120I
a = 1.57085 + 2.17185I
b = 1.20114 1.94252I
0.89978 + 10.41270I 0
u = 0.388285 1.314120I
a = 1.57085 2.17185I
b = 1.20114 + 1.94252I
0.89978 10.41270I 0
u = 0.393601 + 1.326560I
a = 1.80874 2.01322I
b = 0.80659 + 2.06065I
4.9810 + 14.6950I 0
u = 0.393601 1.326560I
a = 1.80874 + 2.01322I
b = 0.80659 2.06065I
4.9810 14.6950I 0
u = 0.461201 + 0.310199I
a = 1.342820 0.347618I
b = 0.39492 + 1.52052I
1.02729 3.44858I 1.47745 + 8.39807I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.461201 0.310199I
a = 1.342820 + 0.347618I
b = 0.39492 1.52052I
1.02729 + 3.44858I 1.47745 8.39807I
u = 0.397825 + 0.339088I
a = 1.159450 0.792131I
b = 0.421810 + 0.207688I
3.31331 + 1.34942I 0.69445 4.81797I
u = 0.397825 0.339088I
a = 1.159450 + 0.792131I
b = 0.421810 0.207688I
3.31331 1.34942I 0.69445 + 4.81797I
u = 0.295735 + 0.374812I
a = 1.64151 + 0.53692I
b = 0.199141 1.171910I
1.52842 + 0.74751I 1.82763 + 0.40847I
u = 0.295735 0.374812I
a = 1.64151 0.53692I
b = 0.199141 + 1.171910I
1.52842 0.74751I 1.82763 0.40847I
u = 0.437462 + 0.102734I
a = 0.720475 + 0.489361I
b = 0.1275350 0.0350142I
0.917664 + 0.265375I 10.32983 1.81252I
u = 0.437462 0.102734I
a = 0.720475 0.489361I
b = 0.1275350 + 0.0350142I
0.917664 0.265375I 10.32983 + 1.81252I
u = 0.227060
a = 2.62077
b = 0.966677
1.29008 12.1470
11
II. I
u
2
= hb 1, u
4
u
3
2u
2
+ a u, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
12
=
1
u
2
a
3
=
u
4
+ u
3
+ 2u
2
+ u
1
a
8
=
u
u
3
+ u
a
9
=
u
u
3
+ u
a
4
=
u
4
+ u
3
+ 2u
2
+ u
1
a
10
=
u
3
+ 2u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
5
u
4
2u
3
u
2
u + 1
a
5
=
1
0
a
2
=
u
4
+ u
3
+ 2u
2
+ u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 6u
3
+ 11u
2
+ 6u + 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
, c
6
, c
9
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
7
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
10
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
11
, c
12
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
6
, c
9
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.567375
b = 1.00000
6.01515 7.06030
u = 0.138835 + 1.234450I
a = 1.35607 0.92119I
b = 1.00000
4.60518 + 1.97241I 3.77811 4.83849I
u = 0.138835 1.234450I
a = 1.35607 + 0.92119I
b = 1.00000
4.60518 1.97241I 3.77811 + 4.83849I
u = 0.408802 + 1.276380I
a = 0.354716 + 0.801205I
b = 1.00000
2.05064 4.59213I 3.28527 + 2.79936I
u = 0.408802 1.276380I
a = 0.354716 0.801205I
b = 1.00000
2.05064 + 4.59213I 3.28527 2.79936I
u = 0.413150
a = 0.854195
b = 1.00000
0.906083 9.92530
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
6
)(u
68
7u
67
+ ··· + 3u 1)
c
3
, c
8
u
6
(u
68
+ u
67
+ ··· 128u 64)
c
4
((u + 1)
6
)(u
68
7u
67
+ ··· + 3u 1)
c
5
, c
6
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
68
+ 2u
67
+ ··· + 172u + 17)
c
7
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
68
2u
67
+ ··· + 2u + 1)
c
9
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
68
6u
67
+ ··· + 19512u 3344)
c
10
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
68
+ 2u
67
+ ··· + 172u + 17)
c
11
, c
12
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
68
2u
67
+ ··· + 2u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
6
)(y
68
65y
67
+ ··· + 29y + 1)
c
3
, c
8
y
6
(y
68
39y
67
+ ··· 53248y + 4096)
c
5
, c
6
, c
10
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
68
66y
67
+ ··· 5682y + 289)
c
7
, c
11
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
68
+ 54y
67
+ ··· 26y + 1)
c
9
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
68
+ 18y
67
+ ··· 465943328y + 11182336)
17