12a
0838
(K12a
0838
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 11 12 1 3 6 7 8
Solving Sequence
7,12
8
1,4
2 9 3 11 6 10 5
c
7
c
12
c
1
c
8
c
3
c
11
c
6
c
10
c
5
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
22
17u
20
+ ··· + b + 1, u
22
+ u
21
+ ··· + a + 2, u
23
+ 2u
22
+ ··· 12u
2
+ 1i
I
u
2
= h−u
2
+ b + 1, u
2
+ a + 2, u
3
u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 26 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
22
17u
20
+· · ·+b+1, u
22
+u
21
+· · ·+a+2, u
23
+2u
22
+· · ·12u
2
+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
22
u
21
+ ··· + 11u 2
u
22
+ 17u
20
+ ··· + 2u 1
a
2
=
u
21
16u
19
+ ··· 11u + 2
u
22
+ 16u
20
+ ··· + 9u
2
u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
22
u
21
+ ··· + 10u 1
3u
22
48u
20
+ ··· + u + 1
a
11
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
u
4
3u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
22
+ 8u
21
81u
20
126u
19
+ 556u
18
+ 835u
17
2107u
16
3020u
15
+ 4822u
14
+ 6443u
13
6906u
12
8110u
11
+ 6388u
10
+ 5547u
9
4175u
8
1464u
7
+ 2179u
6
280u
5
757u
4
+ 196u
3
+ 80u
2
23u 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
23
4u
22
+ ··· + 5u 1
c
3
, c
9
u
23
u
22
+ ··· 28u 8
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
u
23
2u
22
+ ··· + 12u
2
1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
23
26y
22
+ ··· + 57y 1
c
3
, c
9
y
23
+ 21y
22
+ ··· + 592y 64
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
23
36y
22
+ ··· + 24y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.899656 + 0.367597I
a = 0.129750 0.316248I
b = 1.37701 + 0.64432I
10.62640 + 4.79693I 18.4963 4.5941I
u = 0.899656 0.367597I
a = 0.129750 + 0.316248I
b = 1.37701 0.64432I
10.62640 4.79693I 18.4963 + 4.5941I
u = 0.869158
a = 0.611937
b = 1.66429
5.48753 17.2890
u = 0.821958 + 0.135064I
a = 0.253247 + 1.039930I
b = 0.445233 + 0.309895I
3.58507 + 2.11349I 17.2477 5.0037I
u = 0.821958 0.135064I
a = 0.253247 1.039930I
b = 0.445233 0.309895I
3.58507 2.11349I 17.2477 + 5.0037I
u = 1.29295
a = 0.815349
b = 0.215176
6.99093 10.8460
u = 0.292199 + 0.547469I
a = 0.70419 + 1.55774I
b = 0.871306 + 0.010708I
6.92984 1.76193I 14.7690 + 3.3456I
u = 0.292199 0.547469I
a = 0.70419 1.55774I
b = 0.871306 0.010708I
6.92984 + 1.76193I 14.7690 3.3456I
u = 1.43893 + 0.05540I
a = 0.573918 + 0.627821I
b = 0.269240 + 1.142030I
11.26780 2.80601I 17.5990 + 3.0357I
u = 1.43893 0.05540I
a = 0.573918 0.627821I
b = 0.269240 1.142030I
11.26780 + 2.80601I 17.5990 3.0357I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45875
a = 2.49389
b = 1.79311
13.4340 18.2600
u = 0.523970
a = 0.174078
b = 0.424666
0.880680 10.8440
u = 1.46882 + 0.17141I
a = 1.75548 0.96316I
b = 1.371010 0.251551I
18.5944 6.8465I 19.2959 + 3.6692I
u = 1.46882 0.17141I
a = 1.75548 + 0.96316I
b = 1.371010 + 0.251551I
18.5944 + 6.8465I 19.2959 3.6692I
u = 0.198961 + 0.259775I
a = 1.162630 + 0.050871I
b = 0.098000 0.372398I
0.444837 0.821194I 9.62649 + 8.14856I
u = 0.198961 0.259775I
a = 1.162630 0.050871I
b = 0.098000 + 0.372398I
0.444837 + 0.821194I 9.62649 8.14856I
u = 0.236506
a = 3.87954
b = 0.871608
1.99765 0.552820
u = 1.81292
a = 1.34454
b = 2.75785
18.5335 9.99140
u = 1.85429 + 0.01361I
a = 1.048680 + 0.206116I
b = 2.22063 + 0.96437I
15.7173 + 3.1639I 17.6160 2.4156I
u = 1.85429 0.01361I
a = 1.048680 0.206116I
b = 2.22063 0.96437I
15.7173 3.1639I 17.6160 + 2.4156I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.85896
a = 3.64519
b = 8.09850
13.4167 18.4390
u = 1.86140 + 0.04356I
a = 2.83593 1.10657I
b = 6.28352 2.42136I
8.27161 + 7.98934I 19.2912 3.1659I
u = 1.86140 0.04356I
a = 2.83593 + 1.10657I
b = 6.28352 + 2.42136I
8.27161 7.98934I 19.2912 + 3.1659I
7
II. I
u
2
= h−u
2
+ b + 1, u
2
+ a + 2, u
3
u
2
2u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
2
u + 1
a
4
=
u
2
2
u
2
1
a
2
=
u
2
u 2
u
a
9
=
u
2
+ 1
u
2
u + 1
a
3
=
u
2
2
u
2
1
a
11
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
u
2
+ 1
u
2
u + 1
a
5
=
u
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
u 23
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
9
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
c
8
u
3
u
2
2u + 1
c
10
, c
11
, c
12
u
3
+ u
2
2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
9
y
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24698
a = 0.445042
b = 0.554958
7.98968 20.1980
u = 0.445042
a = 1.80194
b = 0.801938
2.34991 23.2470
u = 1.80194
a = 1.24698
b = 2.24698
19.2692 21.5550
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
3
)(u
23
4u
22
+ ··· + 5u 1)
c
3
, c
9
u
3
(u
23
u
22
+ ··· 28u 8)
c
4
((u + 1)
3
)(u
23
4u
22
+ ··· + 5u 1)
c
5
, c
6
, c
7
c
8
(u
3
u
2
2u + 1)(u
23
2u
22
+ ··· + 12u
2
1)
c
10
, c
11
, c
12
(u
3
+ u
2
2u 1)(u
23
2u
22
+ ··· + 12u
2
1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
3
)(y
23
26y
22
+ ··· + 57y 1)
c
3
, c
9
y
3
(y
23
+ 21y
22
+ ··· + 592y 64)
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
(y
3
5y
2
+ 6y 1)(y
23
36y
22
+ ··· + 24y 1)
13