12a
0839
(K12a
0839
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 11 12 1 3 6 8 7
Solving Sequence
8,11
12 7
1,4
2 9 3 6 10 5
c
11
c
7
c
12
c
1
c
8
c
3
c
6
c
10
c
5
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
42
+ u
41
+ ··· + b + u, u
28
11u
26
+ ··· + a 1, u
47
+ 2u
46
+ ··· 2u 1i
I
u
2
= hu
3
+ b + u, u
2
+ a + 1, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
42
+u
41
+· · ·+b+u, u
28
11u
26
+· · ·+a1, u
47
+2u
46
+· · ·2u1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
28
+ 11u
26
+ ··· + 8u + 1
u
42
u
41
+ ··· 9u
2
u
a
2
=
u
46
u
45
+ ··· 11u
2
6u
u
46
2u
45
+ ··· + 3u + 1
a
9
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
3
=
2u
46
+ 2u
45
+ ··· + 14u
2
+ 7u
2u
46
+ 4u
45
+ ··· 4u 2
a
6
=
u
3
+ 2u
u
3
+ u
a
10
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
5
=
u
9
4u
7
5u
5
+ 3u
u
9
3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
46
+ 8u
45
+ ··· + 8u 13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
47
7u
46
+ ··· 7u + 1
c
3
, c
9
u
47
u
46
+ ··· + 128u + 64
c
5
, c
6
, c
8
c
10
u
47
2u
46
+ ··· 18u 9
c
7
, c
11
, c
12
u
47
+ 2u
46
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
47
51y
46
+ ··· + 47y 1
c
3
, c
9
y
47
+ 39y
46
+ ··· + 36864y 4096
c
5
, c
6
, c
8
c
10
y
47
60y
46
+ ··· + 1494y 81
c
7
, c
11
, c
12
y
47
+ 36y
46
+ ··· + 22y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.931573 + 0.033964I
a = 3.62555 1.06085I
b = 4.04479 1.25290I
18.8163 + 7.6066I 17.4102 3.4010I
u = 0.931573 0.033964I
a = 3.62555 + 1.06085I
b = 4.04479 + 1.25290I
18.8163 7.6066I 17.4102 + 3.4010I
u = 0.925379
a = 4.48125
b = 5.06824
15.5609 16.5480
u = 0.921953 + 0.011274I
a = 1.352420 0.172739I
b = 1.42411 + 0.22950I
13.30020 + 3.04123I 15.7591 2.6303I
u = 0.921953 0.011274I
a = 1.352420 + 0.172739I
b = 1.42411 0.22950I
13.30020 3.04123I 15.7591 + 2.6303I
u = 0.350823 + 1.049320I
a = 1.24839 0.95940I
b = 1.86804 + 0.49348I
8.18690 + 1.30928I 14.5225 + 0.I
u = 0.350823 1.049320I
a = 1.24839 + 0.95940I
b = 1.86804 0.49348I
8.18690 1.30928I 14.5225 + 0.I
u = 0.885281
a = 1.61021
b = 1.68165
8.45625 8.69640
u = 0.044109 + 1.177400I
a = 0.897270 + 0.427390I
b = 0.26502 + 1.43818I
1.19605 0.94580I 9.30810 + 0.I
u = 0.044109 1.177400I
a = 0.897270 0.427390I
b = 0.26502 1.43818I
1.19605 + 0.94580I 9.30810 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.262817 + 1.164060I
a = 0.677836 + 0.380418I
b = 0.236782 0.642439I
0.606425 1.119520I 12.48597 + 0.I
u = 0.262817 1.164060I
a = 0.677836 0.380418I
b = 0.236782 + 0.642439I
0.606425 + 1.119520I 12.48597 + 0.I
u = 0.173486 + 1.230470I
a = 0.394455 + 0.372411I
b = 0.781097 + 0.132649I
2.76219 + 2.33868I 0
u = 0.173486 1.230470I
a = 0.394455 0.372411I
b = 0.781097 0.132649I
2.76219 2.33868I 0
u = 0.283890 + 1.214980I
a = 0.93375 1.68089I
b = 2.46189 0.25027I
2.16231 + 3.49023I 0
u = 0.283890 1.214980I
a = 0.93375 + 1.68089I
b = 2.46189 + 0.25027I
2.16231 3.49023I 0
u = 0.729642 + 0.166193I
a = 2.35770 + 1.36778I
b = 1.47388 + 0.31386I
10.80020 5.29604I 17.2800 + 4.5994I
u = 0.729642 0.166193I
a = 2.35770 1.36778I
b = 1.47388 0.31386I
10.80020 + 5.29604I 17.2800 4.5994I
u = 0.057596 + 1.253360I
a = 0.339761 0.116633I
b = 0.339456 1.125610I
3.89474 + 1.72506I 0
u = 0.057596 1.253360I
a = 0.339761 + 0.116633I
b = 0.339456 + 1.125610I
3.89474 1.72506I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.271270 + 1.256580I
a = 0.044945 + 0.350451I
b = 0.929623 + 1.047440I
0.20223 5.63538I 0
u = 0.271270 1.256580I
a = 0.044945 0.350451I
b = 0.929623 1.047440I
0.20223 + 5.63538I 0
u = 0.681129
a = 3.55601
b = 1.84966
5.84226 16.3910
u = 0.663598 + 0.066636I
a = 0.818243 0.611101I
b = 0.281216 0.780752I
3.85427 2.27055I 16.0301 + 4.5719I
u = 0.663598 0.066636I
a = 0.818243 + 0.611101I
b = 0.281216 + 0.780752I
3.85427 + 2.27055I 16.0301 4.5719I
u = 0.418616 + 1.278440I
a = 0.422426 0.961243I
b = 1.59423 + 0.48650I
4.48545 4.66586I 0
u = 0.418616 1.278440I
a = 0.422426 + 0.961243I
b = 1.59423 0.48650I
4.48545 + 4.66586I 0
u = 0.098317 + 1.342180I
a = 0.247608 + 0.502928I
b = 1.198420 + 0.642791I
1.25656 + 3.25255I 0
u = 0.098317 1.342180I
a = 0.247608 0.502928I
b = 1.198420 0.642791I
1.25656 3.25255I 0
u = 0.467449 + 1.264530I
a = 1.55167 + 2.04635I
b = 3.15396 2.12723I
16.8558 2.6238I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.467449 1.264530I
a = 1.55167 2.04635I
b = 3.15396 + 2.12723I
16.8558 + 2.6238I 0
u = 0.290224 + 1.319350I
a = 0.22664 1.55655I
b = 1.55061 0.91105I
6.15563 8.92874I 0
u = 0.290224 1.319350I
a = 0.22664 + 1.55655I
b = 1.55061 + 0.91105I
6.15563 + 8.92874I 0
u = 0.450761 + 1.279910I
a = 0.262410 0.919173I
b = 0.848073 + 0.408862I
9.36462 + 1.85590I 0
u = 0.450761 1.279910I
a = 0.262410 + 0.919173I
b = 0.848073 0.408862I
9.36462 1.85590I 0
u = 0.449749 + 1.289880I
a = 1.11666 + 2.79890I
b = 4.69994 1.43155I
11.55410 4.90637I 0
u = 0.449749 1.289880I
a = 1.11666 2.79890I
b = 4.69994 + 1.43155I
11.55410 + 4.90637I 0
u = 0.430024 + 0.463380I
a = 0.073435 0.954770I
b = 0.627166 + 0.371706I
6.80327 + 1.66591I 14.4251 3.8260I
u = 0.430024 0.463380I
a = 0.073435 + 0.954770I
b = 0.627166 0.371706I
6.80327 1.66591I 14.4251 + 3.8260I
u = 0.443644 + 1.297270I
a = 0.442064 0.748189I
b = 1.82872 + 0.23677I
9.23009 + 7.91648I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443644 1.297270I
a = 0.442064 + 0.748189I
b = 1.82872 0.23677I
9.23009 7.91648I 0
u = 0.443422 + 1.315870I
a = 0.30539 + 2.51704I
b = 4.35921 + 0.13601I
16.4532 + 12.5153I 0
u = 0.443422 1.315870I
a = 0.30539 2.51704I
b = 4.35921 0.13601I
16.4532 12.5153I 0
u = 0.475692
a = 1.09705
b = 0.304127
0.943106 10.1730
u = 0.220025 + 0.246765I
a = 0.83102 + 1.27964I
b = 0.099600 + 0.370710I
0.433930 + 0.816857I 9.44363 8.26201I
u = 0.220025 0.246765I
a = 0.83102 1.27964I
b = 0.099600 0.370710I
0.433930 0.816857I 9.44363 + 8.26201I
u = 0.228742
a = 2.90776
b = 0.724057
2.00058 0.109480
9
II. I
u
2
= hu
3
+ b + u, u
2
+ a + 1, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
2
1
u
3
u
a
2
=
0
u
4
u
3
+ 2u
2
u
a
9
=
u
5
2u
3
u
u
5
+ u
4
2u
3
+ u
2
u 1
a
3
=
u
2
1
u
3
u
a
6
=
u
3
+ 2u
u
3
+ u
a
10
=
u
5
2u
3
u
u
5
+ u
4
2u
3
+ u
2
u 1
a
5
=
u
2
1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 6u
3
11u
2
+ 6u 17
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
9
u
6
c
4
(u + 1)
6
c
5
, c
6
, c
8
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
11
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
9
y
6
c
5
, c
6
, c
8
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 1.76250
b = 1.53904
9.30502 19.0600
u = 0.138835 + 1.234450I
a = 0.504580 + 0.342767I
b = 0.493180 + 0.575288I
1.31531 + 1.97241I 8.22189 4.83849I
u = 0.138835 1.234450I
a = 0.504580 0.342767I
b = 0.493180 0.575288I
1.31531 1.97241I 8.22189 + 4.83849I
u = 0.408802 + 1.276380I
a = 0.462019 1.043570I
b = 1.52087 + 0.16310I
5.34051 4.59213I 15.2853 + 2.7994I
u = 0.408802 1.276380I
a = 0.462019 + 1.043570I
b = 1.52087 0.16310I
5.34051 + 4.59213I 15.2853 2.7994I
u = 0.413150
a = 1.17069
b = 0.483672
2.38379 21.9250
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
6
)(u
47
7u
46
+ ··· 7u + 1)
c
3
, c
9
u
6
(u
47
u
46
+ ··· + 128u + 64)
c
4
((u + 1)
6
)(u
47
7u
46
+ ··· 7u + 1)
c
5
, c
6
, c
8
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
47
2u
46
+ ··· 18u 9)
c
7
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
47
+ 2u
46
+ ··· 2u 1)
c
10
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
47
2u
46
+ ··· 18u 9)
c
11
, c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
47
+ 2u
46
+ ··· 2u 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
6
)(y
47
51y
46
+ ··· + 47y 1)
c
3
, c
9
y
6
(y
47
+ 39y
46
+ ··· + 36864y 4096)
c
5
, c
6
, c
8
c
10
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
47
60y
46
+ ··· + 1494y 81)
c
7
, c
11
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
47
+ 36y
46
+ ··· + 22y 1)
15