10
81
(K10a
7
)
A knot diagram
1
Linearized knot diagam
4 1 6 2 8 3 10 5 7 9
Solving Sequence
2,5
4 1
3,9
8 6 10 7
c
4
c
1
c
2
c
8
c
5
c
10
c
7
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.38501 × 10
15
u
47
+ 7.04930 × 10
15
u
46
+ ··· + 1.31625 × 10
15
b + 3.65379 × 10
15
,
1.00335 × 10
16
u
47
3.95579 × 10
16
u
46
+ ··· + 2.63249 × 10
15
a + 1.73053 × 10
16
, u
48
5u
47
+ ··· + 10u + 1i
I
u
2
= hb, u
2
+ a + 2u 1, u
3
u
2
+ 1i
I
u
3
= ha
2
+ b + 2a + 1, a
3
+ 2a
2
+ a + 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.39 × 10
15
u
47
+ 7.05 × 10
15
u
46
+ · · · + 1.32 × 10
15
b + 3.65 ×
10
15
, 1.00 × 10
16
u
47
3.96 × 10
16
u
46
+ · · · + 2.63 × 10
15
a + 1.73 ×
10
16
, u
48
5u
47
+ · · · + 10u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
3.81140u
47
+ 15.0268u
46
+ ··· + 36.2869u 6.57375
1.05225u
47
5.35561u
46
+ ··· 25.7273u 2.77592
a
8
=
4.86364u
47
+ 20.3824u
46
+ ··· + 62.0142u 3.79783
1.05225u
47
5.35561u
46
+ ··· 25.7273u 2.77592
a
6
=
0.828554u
47
0.00856335u
46
+ ··· + 28.0123u 1.38653
2.29509u
47
+ 7.50970u
46
+ ··· + 3.57759u + 0.200750
a
10
=
2.99681u
47
12.6887u
46
+ ··· 38.0813u + 3.39699
0.302246u
47
0.355609u
46
+ ··· + 8.52273u + 0.974080
a
7
=
0.0322954u
47
+ 0.330979u
46
+ ··· + 8.02219u 3.03662
0.302246u
47
+ 0.355609u
46
+ ··· 8.52273u 0.974080
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2572719667737379
1316245742897122
u
47
14240246736967463
1316245742897122
u
46
+ ···
66418667522566225
1316245742897122
u +
3102450479488985
658122871448561
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
48
5u
47
+ ··· + 10u + 1
c
2
u
48
+ 23u
47
+ ··· + 180u + 1
c
3
, c
6
u
48
2u
47
+ ··· + 28u 8
c
5
, c
8
u
48
+ 2u
47
+ ··· 28u 8
c
7
, c
9
u
48
+ 5u
47
+ ··· 10u + 1
c
10
u
48
23u
47
+ ··· 180u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
9
y
48
23y
47
+ ··· 180y + 1
c
2
, c
10
y
48
+ 9y
47
+ ··· 29816y + 1
c
3
, c
5
, c
6
c
8
y
48
+ 24y
47
+ ··· 464y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.351537 + 0.949778I
a = 1.006580 + 0.754616I
b = 0.695127 + 1.130530I
2.54767 + 8.71683I 2.88659 5.91299I
u = 0.351537 0.949778I
a = 1.006580 0.754616I
b = 0.695127 1.130530I
2.54767 8.71683I 2.88659 + 5.91299I
u = 0.935499 + 0.280058I
a = 0.258750 + 0.692688I
b = 0.32474 1.42072I
4.55335 + 1.97419I 0.52111 + 3.87774I
u = 0.935499 0.280058I
a = 0.258750 0.692688I
b = 0.32474 + 1.42072I
4.55335 1.97419I 0.52111 3.87774I
u = 0.958701 + 0.411863I
a = 1.12181 + 1.17224I
b = 0.845547 + 0.386680I
2.50599I 0. 3.68111I
u = 0.958701 0.411863I
a = 1.12181 1.17224I
b = 0.845547 0.386680I
2.50599I 0. + 3.68111I
u = 1.027890 + 0.366302I
a = 0.558001 0.681766I
b = 0.02906 + 1.43386I
5.20077 4.17900I 3.36906 + 7.53383I
u = 1.027890 0.366302I
a = 0.558001 + 0.681766I
b = 0.02906 1.43386I
5.20077 + 4.17900I 3.36906 7.53383I
u = 0.852801 + 0.288192I
a = 2.58191 + 1.66058I
b = 0.332500 0.567513I
0.675636 + 0.515505I 2.57655 6.02720I
u = 0.852801 0.288192I
a = 2.58191 1.66058I
b = 0.332500 + 0.567513I
0.675636 0.515505I 2.57655 + 6.02720I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.516978 + 0.722434I
a = 0.871888 0.224038I
b = 0.549420 + 0.862669I
4.87326 + 0.03227I 4.84666 0.67896I
u = 0.516978 0.722434I
a = 0.871888 + 0.224038I
b = 0.549420 0.862669I
4.87326 0.03227I 4.84666 + 0.67896I
u = 0.425885 + 0.773654I
a = 1.69830 + 0.13159I
b = 0.950582 0.574763I
4.33954 + 2.65713I 5.08315 1.96927I
u = 0.425885 0.773654I
a = 1.69830 0.13159I
b = 0.950582 + 0.574763I
4.33954 2.65713I 5.08315 + 1.96927I
u = 0.295606 + 0.828875I
a = 0.631610 0.587022I
b = 0.544625 1.084280I
3.47198I 0. 2.47118I
u = 0.295606 0.828875I
a = 0.631610 + 0.587022I
b = 0.544625 + 1.084280I
3.47198I 0. + 2.47118I
u = 1.116730 + 0.138646I
a = 1.10500 1.07815I
b = 0.704022 + 0.224888I
0.675636 0.515505I 2.57655 + 6.02720I
u = 1.116730 0.138646I
a = 1.10500 + 1.07815I
b = 0.704022 0.224888I
0.675636 + 0.515505I 2.57655 6.02720I
u = 0.992673 + 0.539998I
a = 0.601343 0.631046I
b = 1.060630 0.166744I
0.88639 2.97344I 0. + 2.64448I
u = 0.992673 0.539998I
a = 0.601343 + 0.631046I
b = 1.060630 + 0.166744I
0.88639 + 2.97344I 0. 2.64448I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.628205 + 0.596659I
a = 1.064010 0.397214I
b = 0.829653 + 0.427683I
2.00090 1.53468I 2.12390 + 3.90788I
u = 0.628205 0.596659I
a = 1.064010 + 0.397214I
b = 0.829653 0.427683I
2.00090 + 1.53468I 2.12390 3.90788I
u = 0.547224 + 0.659382I
a = 0.71785 + 1.52298I
b = 0.434204 + 1.035090I
0.88639 2.97344I 0.29359 + 2.64448I
u = 0.547224 0.659382I
a = 0.71785 1.52298I
b = 0.434204 1.035090I
0.88639 + 2.97344I 0.29359 2.64448I
u = 0.747136 + 0.877281I
a = 0.933943 0.476702I
b = 0.485002 0.768666I
5.20077 4.17900I 3.36906 + 7.53383I
u = 0.747136 0.877281I
a = 0.933943 + 0.476702I
b = 0.485002 + 0.768666I
5.20077 + 4.17900I 3.36906 7.53383I
u = 0.833904
a = 0.880190
b = 0.275054
1.20368 8.97040
u = 1.079990 + 0.482069I
a = 1.72018 0.33297I
b = 0.365280 + 1.116600I
4.33954 + 2.65713I 5.08315 + 0.I
u = 1.079990 0.482069I
a = 1.72018 + 0.33297I
b = 0.365280 1.116600I
4.33954 2.65713I 5.08315 + 0.I
u = 1.035420 + 0.586063I
a = 2.05065 + 0.08569I
b = 0.591514 1.148530I
2.34804 + 7.85171I 0. 6.74189I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.035420 0.586063I
a = 2.05065 0.08569I
b = 0.591514 + 1.148530I
2.34804 7.85171I 0. + 6.74189I
u = 1.046730 + 0.598380I
a = 1.36039 + 1.17731I
b = 0.378423 1.023550I
3.29646 5.08791I 0. + 5.66025I
u = 1.046730 0.598380I
a = 1.36039 1.17731I
b = 0.378423 + 1.023550I
3.29646 + 5.08791I 0. 5.66025I
u = 0.964917 + 0.798665I
a = 0.046037 + 0.723287I
b = 0.325521 + 0.665488I
4.55335 1.97419I 0
u = 0.964917 0.798665I
a = 0.046037 0.723287I
b = 0.325521 0.665488I
4.55335 + 1.97419I 0
u = 1.098250 + 0.602404I
a = 0.575750 + 0.805276I
b = 1.111730 + 0.493637I
2.34804 7.85171I 0
u = 1.098250 0.602404I
a = 0.575750 0.805276I
b = 1.111730 0.493637I
2.34804 + 7.85171I 0
u = 1.249240 + 0.262371I
a = 0.509018 0.507195I
b = 0.233338 + 1.114770I
4.87326 0.03227I 0
u = 1.249240 0.262371I
a = 0.509018 + 0.507195I
b = 0.233338 1.114770I
4.87326 + 0.03227I 0
u = 1.158620 + 0.585509I
a = 1.46782 0.64788I
b = 0.576415 + 1.261620I
2.54767 8.71683I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.158620 0.585509I
a = 1.46782 + 0.64788I
b = 0.576415 1.261620I
2.54767 + 8.71683I 0
u = 1.332740 + 0.180321I
a = 0.022960 + 0.366381I
b = 0.509355 1.133010I
3.29646 5.08791I 0
u = 1.332740 0.180321I
a = 0.022960 0.366381I
b = 0.509355 + 1.133010I
3.29646 + 5.08791I 0
u = 1.187100 + 0.637571I
a = 1.69469 + 0.56994I
b = 0.73411 1.22507I
14.4927I 0
u = 1.187100 0.637571I
a = 1.69469 0.56994I
b = 0.73411 + 1.22507I
14.4927I 0
u = 0.249189 + 0.602859I
a = 0.538717 1.292580I
b = 0.050010 1.026510I
2.00090 + 1.53468I 2.12390 3.90788I
u = 0.249189 0.602859I
a = 0.538717 + 1.292580I
b = 0.050010 + 1.026510I
2.00090 1.53468I 2.12390 + 3.90788I
u = 0.0760954
a = 9.69862
b = 0.503995
1.20368 8.97040
9
II. I
u
2
= hb, u
2
+ a + 2u 1, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
1
=
u
u
2
+ u + 1
a
3
=
u
2
+ 1
u
2
a
9
=
u
2
2u + 1
0
a
8
=
u
2
2u + 1
0
a
6
=
1
0
a
10
=
u
2
u + 1
u
2
+ u + 1
a
7
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 8u 4
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
6
u
3
+ u
2
+ 2u + 1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
, c
8
u
3
c
7
(u + 1)
3
c
9
, c
10
(u 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
3
y
2
+ 2y 1
c
2
, c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
5
, c
8
y
3
c
7
, c
9
, c
10
(y 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.539798 0.182582I
b = 0
4.66906 2.82812I 2.80443 + 4.65175I
u = 0.877439 0.744862I
a = 0.539798 + 0.182582I
b = 0
4.66906 + 2.82812I 2.80443 4.65175I
u = 0.754878
a = 3.07960
b = 0
0.531480 10.6090
13
III. I
u
3
= ha
2
+ b + 2a + 1, a
3
+ 2a
2
+ a + 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
4
=
1
1
a
1
=
1
0
a
3
=
1
1
a
9
=
a
a
2
2a 1
a
8
=
a
2
+ 3a + 1
a
2
2a 1
a
6
=
a
2
+ a 1
a
2
a + 1
a
10
=
2
a
2
a + 1
a
7
=
a
2
+ a 1
a
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
6a 3
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
c
2
, c
4
(u + 1)
3
c
3
, c
6
u
3
c
5
u
3
+ u
2
+ 2u + 1
c
7
u
3
u
2
+ 1
c
8
, c
10
u
3
u
2
+ 2u 1
c
9
u
3
+ u
2
1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
8
, c
10
y
3
+ 3y
2
+ 2y 1
c
7
, c
9
y
3
y
2
+ 2y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.215080 1.307140I
4.66906 + 2.82812I 2.80443 4.65175I
u = 1.00000
a = 0.122561 0.744862I
b = 0.215080 + 1.307140I
4.66906 2.82812I 2.80443 + 4.65175I
u = 1.00000
a = 1.75488
b = 0.569840
0.531480 10.6090
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
3
+ u
2
1)(u
48
5u
47
+ ··· + 10u + 1)
c
2
((u + 1)
3
)(u
3
+ u
2
+ 2u + 1)(u
48
+ 23u
47
+ ··· + 180u + 1)
c
3
u
3
(u
3
u
2
+ 2u 1)(u
48
2u
47
+ ··· + 28u 8)
c
4
((u + 1)
3
)(u
3
u
2
+ 1)(u
48
5u
47
+ ··· + 10u + 1)
c
5
u
3
(u
3
+ u
2
+ 2u + 1)(u
48
+ 2u
47
+ ··· 28u 8)
c
6
u
3
(u
3
+ u
2
+ 2u + 1)(u
48
2u
47
+ ··· + 28u 8)
c
7
((u + 1)
3
)(u
3
u
2
+ 1)(u
48
+ 5u
47
+ ··· 10u + 1)
c
8
u
3
(u
3
u
2
+ 2u 1)(u
48
+ 2u
47
+ ··· 28u 8)
c
9
((u 1)
3
)(u
3
+ u
2
1)(u
48
+ 5u
47
+ ··· 10u + 1)
c
10
((u 1)
3
)(u
3
u
2
+ 2u 1)(u
48
23u
47
+ ··· 180u + 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
9
((y 1)
3
)(y
3
y
2
+ 2y 1)(y
48
23y
47
+ ··· 180y + 1)
c
2
, c
10
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)(y
48
+ 9y
47
+ ··· 29816y + 1)
c
3
, c
5
, c
6
c
8
y
3
(y
3
+ 3y
2
+ 2y 1)(y
48
+ 24y
47
+ ··· 464y + 64)
19