12a
0878
(K12a
0878
)
A knot diagram
1
Linearized knot diagam
4 6 7 10 2 3 11 12 1 5 8 9
Solving Sequence
2,5
6 3
7,10
11 8 4 1 9 12
c
5
c
2
c
6
c
10
c
7
c
4
c
1
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h5u
35
+ 7u
34
+ ··· + b 4, 2u
35
u
34
+ ··· + 2a + 13, u
36
+ 3u
35
+ ··· + 6u 1i
I
u
2
= hb, a u + 2, u
2
u 1i
I
u
3
= hb 1, u
3
+ a + 2u + 1, u
4
u
3
2u
2
+ 2u 1i
I
u
4
= hb 1, a, u + 1i
I
u
5
= hb, a 1, u
2
u 1i
* 5 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5u
35
+7u
34
+· · ·+b4, 2u
35
u
34
+· · ·+2a+13, u
36
+3u
35
+· · ·+6u1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
35
+
1
2
u
34
+ ··· +
27
2
u
13
2
5u
35
7u
34
+ ··· 23u + 4
a
11
=
4u
35
13
2
u
34
+ ···
19
2
u
5
2
5u
35
7u
34
+ ··· 23u + 4
a
8
=
1
2
u
34
u
33
+ ··· +
11
2
u +
3
2
u
9
+ 5u
7
7u
5
+ 2u
3
u
a
4
=
u
3
2u
u
5
3u
3
+ u
a
1
=
u
7
4u
5
+ 4u
3
u
9
5u
7
+ 7u
5
2u
3
+ u
a
9
=
1
2
u
35
u
34
+ ··· +
21
2
u 6
1
2
u
35
1
2
u
34
+ ··· u +
1
2
a
12
=
0.500000u
35
+ 10.5000u
33
+ ··· 16.5000u
2
9.50000u
1
2
u
35
1
2
u
34
+ ··· u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
2
u
35
+ 13u
34
+ ··· +
137
2
u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
36
7u
35
+ ··· 204u 7
c
2
, c
3
, c
5
c
6
u
36
+ 3u
35
+ ··· + 6u 1
c
4
, c
10
u
36
+ 4u
35
+ ··· + 80u + 16
c
7
, c
8
, c
9
c
11
, c
12
u
36
3u
35
+ ··· 12u
2
1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
36
+ 19y
35
+ ··· 24116y + 49
c
2
, c
3
, c
5
c
6
y
36
41y
35
+ ··· 56y + 1
c
4
, c
10
y
36
20y
35
+ ··· 3200y + 256
c
7
, c
8
, c
9
c
11
, c
12
y
36
49y
35
+ ··· + 24y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.680450 + 0.624888I
a = 1.58464 + 1.12498I
b = 1.37928 + 0.58427I
15.3018 8.1184I 7.62644 + 5.89402I
u = 0.680450 0.624888I
a = 1.58464 1.12498I
b = 1.37928 0.58427I
15.3018 + 8.1184I 7.62644 5.89402I
u = 0.634805 + 0.572486I
a = 1.68198 1.14140I
b = 1.250780 0.467984I
5.35265 6.44473I 7.06333 + 7.49999I
u = 0.634805 0.572486I
a = 1.68198 + 1.14140I
b = 1.250780 + 0.467984I
5.35265 + 6.44473I 7.06333 7.49999I
u = 0.286743 + 0.718481I
a = 1.61383 0.66499I
b = 1.41214 + 0.42853I
16.4706 + 3.6258I 9.89093 0.70806I
u = 0.286743 0.718481I
a = 1.61383 + 0.66499I
b = 1.41214 0.42853I
16.4706 3.6258I 9.89093 + 0.70806I
u = 1.216880 + 0.225154I
a = 0.176584 0.371182I
b = 1.374430 + 0.160487I
11.69880 0.20082I 6.33515 + 0.I
u = 1.216880 0.225154I
a = 0.176584 + 0.371182I
b = 1.374430 0.160487I
11.69880 + 0.20082I 6.33515 + 0.I
u = 0.556839 + 0.497955I
a = 1.87783 + 1.11937I
b = 1.079090 + 0.293810I
1.19518 3.43864I 3.32627 + 7.55199I
u = 0.556839 0.497955I
a = 1.87783 1.11937I
b = 1.079090 0.293810I
1.19518 + 3.43864I 3.32627 7.55199I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.488097 + 0.539433I
a = 0.755389 0.156628I
b = 0.139231 + 1.154510I
11.32400 + 1.86563I 6.84113 3.39356I
u = 0.488097 0.539433I
a = 0.755389 + 0.156628I
b = 0.139231 1.154510I
11.32400 1.86563I 6.84113 + 3.39356I
u = 0.302987 + 0.626688I
a = 1.73596 + 0.65197I
b = 1.228520 0.302969I
6.32076 + 2.37657I 9.77017 1.34852I
u = 0.302987 0.626688I
a = 1.73596 0.65197I
b = 1.228520 + 0.302969I
6.32076 2.37657I 9.77017 + 1.34852I
u = 0.482616 + 0.407041I
a = 0.667048 0.013183I
b = 0.156607 0.892042I
1.87081 + 1.46712I 6.30394 4.92073I
u = 0.482616 0.407041I
a = 0.667048 + 0.013183I
b = 0.156607 + 0.892042I
1.87081 1.46712I 6.30394 + 4.92073I
u = 0.603920 + 0.151230I
a = 0.257154 + 0.105987I
b = 0.288863 + 0.427112I
1.107760 + 0.363241I 6.95847 1.67967I
u = 0.603920 0.151230I
a = 0.257154 0.105987I
b = 0.288863 0.427112I
1.107760 0.363241I 6.95847 + 1.67967I
u = 1.38180
a = 0.715291
b = 1.22298
1.39348 6.13670
u = 1.52012 + 0.10884I
a = 1.040470 0.777211I
b = 1.121760 0.323243I
4.81513 + 1.90456I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52012 0.10884I
a = 1.040470 + 0.777211I
b = 1.121760 + 0.323243I
4.81513 1.90456I 0
u = 1.52376 + 0.14580I
a = 0.388481 + 0.623220I
b = 0.395969 + 1.220420I
4.64948 4.27120I 0
u = 1.52376 0.14580I
a = 0.388481 0.623220I
b = 0.395969 1.220420I
4.64948 + 4.27120I 0
u = 1.54036 + 0.09785I
a = 0.291616 0.548274I
b = 0.355163 1.046370I
4.96649 3.17823I 0
u = 1.54036 0.09785I
a = 0.291616 + 0.548274I
b = 0.355163 + 1.046370I
4.96649 + 3.17823I 0
u = 1.55388 + 0.14251I
a = 0.903024 + 1.018170I
b = 1.164680 + 0.488851I
5.88929 + 5.74406I 0
u = 1.55388 0.14251I
a = 0.903024 1.018170I
b = 1.164680 0.488851I
5.88929 5.74406I 0
u = 0.439340
a = 3.99822
b = 0.448670
8.22478 19.8310
u = 1.57896 + 0.04089I
a = 0.168039 + 0.376790I
b = 0.269429 + 0.728694I
8.61991 1.07838I 0
u = 1.57896 0.04089I
a = 0.168039 0.376790I
b = 0.269429 0.728694I
8.61991 + 1.07838I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.57622 + 0.17454I
a = 0.742839 1.118400I
b = 1.254650 0.614758I
2.04882 + 9.20350I 0
u = 1.57622 0.17454I
a = 0.742839 + 1.118400I
b = 1.254650 + 0.614758I
2.04882 9.20350I 0
u = 1.59552 + 0.19703I
a = 0.638410 + 1.172730I
b = 1.32886 + 0.71326I
7.68400 + 11.19530I 0
u = 1.59552 0.19703I
a = 0.638410 1.172730I
b = 1.32886 0.71326I
7.68400 11.19530I 0
u = 1.65310
a = 0.316454
b = 0.667605
7.37086 0
u = 0.154049
a = 3.44747
b = 0.378377
0.766693 13.5400
8
II. I
u
2
= hb, a u + 2, u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
3
=
u
u 1
a
7
=
u
u
a
10
=
u 2
0
a
11
=
u 2
0
a
8
=
3u + 3
u
a
4
=
1
0
a
1
=
u
u
a
9
=
u 3
1
a
12
=
2u + 4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
11
, c
12
u
2
+ u 1
c
4
, c
10
u
2
c
5
, c
6
, c
7
c
8
, c
9
u
2
u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
2
3y + 1
c
4
, c
10
y
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.61803
b = 0
7.89568 5.00000
u = 1.61803
a = 0.381966
b = 0
7.89568 5.00000
12
III. I
u
3
= hb 1, u
3
+ a + 2u + 1, u
4
u
3
2u
2
+ 2u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
3
+ 2u 1
a
10
=
u
3
2u 1
1
a
11
=
u
3
2u
1
a
8
=
u
3
u
2
+ 2u
u
3
+ u 1
a
4
=
u
3
2u
1
a
1
=
u
2
+ u 1
u
3
u + 1
a
9
=
u
2
u 1
u
3
u
2
+ u
a
12
=
u
3
1
u
3
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
3u
3
+ 2u
2
2u + 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
9
, c
11
, c
12
u
4
u
3
2u
2
+ 2u 1
c
4
, c
10
(u 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
5y
3
6y
2
+ 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
9
, c
11
, c
12
y
4
5y
3
+ 6y
2
+ 1
c
4
, c
10
(y 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.407392 + 0.476565I
a = 2.02474 0.82408I
b = 1.00000
1.64493 6.00000
u = 0.407392 0.476565I
a = 2.02474 + 0.82408I
b = 1.00000
1.64493 6.00000
u = 1.50507
a = 1.39919
b = 1.00000
1.64493 6.00000
u = 1.69028
a = 0.448678
b = 1.00000
1.64493 6.00000
16
IV. I
u
4
= hb 1, a, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
3
=
1
0
a
7
=
0
1
a
10
=
0
1
a
11
=
1
1
a
8
=
1
2
a
4
=
1
1
a
1
=
1
2
a
9
=
1
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u + 1
c
4
, c
10
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
20
V. I
u
5
= hb, a 1, u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
3
=
u
u 1
a
7
=
u
u
a
10
=
1
0
a
11
=
1
0
a
8
=
2u
u
a
4
=
1
0
a
1
=
u
u
a
9
=
u + 2
u + 1
a
12
=
2u 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
11
, c
12
u
2
+ u 1
c
4
, c
10
u
2
c
5
, c
6
, c
7
c
8
, c
9
u
2
u 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
2
3y + 1
c
4
, c
10
y
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 0
0 0
u = 1.61803
a = 1.00000
b = 0
0 0
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
2
+ u 1)
2
(u
4
3u
3
+ 2u
2
2u + 1)
· (u
36
7u
35
+ ··· 204u 7)
c
2
, c
3
(u + 1)(u
2
+ u 1)
2
(u
4
u
3
+ ··· + 2u 1)(u
36
+ 3u
35
+ ··· + 6u 1)
c
4
, c
10
u
4
(u 1)
5
(u
36
+ 4u
35
+ ··· + 80u + 16)
c
5
, c
6
(u + 1)(u
2
u 1)
2
(u
4
u
3
+ ··· + 2u 1)(u
36
+ 3u
35
+ ··· + 6u 1)
c
7
, c
8
, c
9
(u + 1)(u
2
u 1)
2
(u
4
u
3
+ ··· + 2u 1)(u
36
3u
35
+ ··· 12u
2
1)
c
11
, c
12
(u + 1)(u
2
+ u 1)
2
(u
4
u
3
+ ··· + 2u 1)(u
36
3u
35
+ ··· 12u
2
1)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
2
3y + 1)
2
(y
4
5y
3
6y
2
+ 1)
· (y
36
+ 19y
35
+ ··· 24116y + 49)
c
2
, c
3
, c
5
c
6
(y 1)(y
2
3y + 1)
2
(y
4
5y
3
+ 6y
2
+ 1)(y
36
41y
35
+ ··· 56y + 1)
c
4
, c
10
y
4
(y 1)
5
(y
36
20y
35
+ ··· 3200y + 256)
c
7
, c
8
, c
9
c
11
, c
12
(y 1)(y
2
3y + 1)
2
(y
4
5y
3
+ 6y
2
+ 1)(y
36
49y
35
+ ··· + 24y + 1)
26