10
83
(K10a
87
)
A knot diagram
1
Linearized knot diagam
4 5 1 8 9 10 3 2 7 6
Solving Sequence
2,5 3,8
9 6 4 1 7 10
c
2
c
8
c
5
c
4
c
1
c
7
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h5.71392 × 10
63
u
40
+ 3.65753 × 10
64
u
39
+ ··· + 1.68092 × 10
63
b 3.02213 × 10
63
,
6.85501 × 10
63
u
40
4.73991 × 10
64
u
39
+ ··· + 1.68092 × 10
63
a + 1.55757 × 10
64
, u
41
+ 7u
40
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.71×10
63
u
40
+3.66×10
64
u
39
+· · ·+1.68×10
63
b3.02×10
63
, 6.86×
10
63
u
40
4.74×10
64
u
39
+· · ·+1.68×10
63
a+1.56×10
64
, u
41
+7u
40
+· · ·u1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
8
=
4.07812u
40
+ 28.1982u
39
+ ··· + 2.31009u 9.26617
3.39928u
40
21.7591u
39
+ ··· + 7.35017u + 1.79790
a
9
=
0.678844u
40
+ 6.43917u
39
+ ··· + 9.66026u 7.46827
3.39928u
40
21.7591u
39
+ ··· + 7.35017u + 1.79790
a
6
=
8.89305u
40
+ 59.3831u
39
+ ··· 6.00010u 11.8860
4.09598u
40
+ 28.5050u
39
+ ··· + 3.04934u 8.50322
a
4
=
1.80830u
40
+ 11.7114u
39
+ ··· 1.62251u 0.316229
2.98878u
40
+ 19.1668u
39
+ ··· 5.42693u 3.06653
a
1
=
1.80830u
40
+ 11.7114u
39
+ ··· 1.62251u 0.316229
3.20007u
40
20.2893u
39
+ ··· + 6.28848u + 2.11978
a
7
=
1.67473u
40
+ 12.2834u
39
+ ··· + 5.93075u 7.11966
3.47210u
40
22.4391u
39
+ ··· + 5.85564u + 2.70675
a
10
=
4.33853u
40
24.2279u
39
+ ··· + 19.3082u 5.37875
7.53934u
40
48.4715u
39
+ ··· + 11.8342u + 6.09444
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10.0825u
40
65.2708u
39
+ ··· + 2.08186u + 7.14206
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
41
+ u
40
+ ··· + 7u 1
c
2
u
41
7u
40
+ ··· u + 1
c
4
u
41
+ 3u
40
+ ··· + u + 1
c
5
u
41
u
40
+ ··· + 131u 17
c
6
, c
9
, c
10
u
41
+ u
40
+ ··· + 3u 1
c
7
u
41
u
40
+ ··· + 289u + 77
c
8
u
41
3u
40
+ ··· 129u + 31
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
41
29y
40
+ ··· 7y 1
c
2
y
41
+ 3y
40
+ ··· 7y 1
c
4
y
41
+ 7y
40
+ ··· 3y 1
c
5
y
41
17y
40
+ ··· 2627y 289
c
6
, c
9
, c
10
y
41
+ 35y
40
+ ··· 3y 1
c
7
y
41
25y
40
+ ··· 76331y 5929
c
8
y
41
45y
40
+ ··· + 24081y 961
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.866167 + 0.522972I
a = 1.35646 0.66908I
b = 0.725791 1.020460I
4.89451 + 5.37316I 0.36580 6.73028I
u = 0.866167 0.522972I
a = 1.35646 + 0.66908I
b = 0.725791 + 1.020460I
4.89451 5.37316I 0.36580 + 6.73028I
u = 0.631814 + 0.671299I
a = 0.943824 0.130258I
b = 0.620989 + 0.419528I
0.99413 1.43665I 0.46376 + 2.78521I
u = 0.631814 0.671299I
a = 0.943824 + 0.130258I
b = 0.620989 0.419528I
0.99413 + 1.43665I 0.46376 2.78521I
u = 1.134280 + 0.411388I
a = 0.871113 0.261658I
b = 0.321519 0.685150I
6.90594 0.82118I 3.22724 + 0.I
u = 1.134280 0.411388I
a = 0.871113 + 0.261658I
b = 0.321519 + 0.685150I
6.90594 + 0.82118I 3.22724 + 0.I
u = 0.465693 + 0.633658I
a = 0.05902 2.25820I
b = 0.580789 0.173369I
0.29899 5.96215I 6.24062 + 8.95093I
u = 0.465693 0.633658I
a = 0.05902 + 2.25820I
b = 0.580789 + 0.173369I
0.29899 + 5.96215I 6.24062 8.95093I
u = 0.326222 + 0.713161I
a = 2.26295 0.54539I
b = 0.755468 + 0.459159I
2.95137 + 3.82132I 10.20968 8.07346I
u = 0.326222 0.713161I
a = 2.26295 + 0.54539I
b = 0.755468 0.459159I
2.95137 3.82132I 10.20968 + 8.07346I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.801624 + 1.033830I
a = 1.213990 0.028195I
b = 1.161390 + 0.790188I
3.54673 + 5.39109I 0
u = 0.801624 1.033830I
a = 1.213990 + 0.028195I
b = 1.161390 0.790188I
3.54673 5.39109I 0
u = 0.344862 + 1.265380I
a = 0.614486 0.252898I
b = 0.953366 + 0.482315I
1.46534 1.30012I 0
u = 0.344862 1.265380I
a = 0.614486 + 0.252898I
b = 0.953366 0.482315I
1.46534 + 1.30012I 0
u = 0.119178 + 0.652646I
a = 1.53296 + 2.51289I
b = 0.639883 0.088284I
4.91037 1.30258I 16.3776 + 4.3347I
u = 0.119178 0.652646I
a = 1.53296 2.51289I
b = 0.639883 + 0.088284I
4.91037 + 1.30258I 16.3776 4.3347I
u = 0.020565 + 0.656018I
a = 0.658242 0.704684I
b = 1.62626 0.29430I
2.00733 2.04071I 3.80481 + 5.50278I
u = 0.020565 0.656018I
a = 0.658242 + 0.704684I
b = 1.62626 + 0.29430I
2.00733 + 2.04071I 3.80481 5.50278I
u = 0.453284 + 0.429541I
a = 0.257607 1.211290I
b = 0.541078 1.041380I
3.37217 + 3.66290I 0.41021 1.40051I
u = 0.453284 0.429541I
a = 0.257607 + 1.211290I
b = 0.541078 + 1.041380I
3.37217 3.66290I 0.41021 + 1.40051I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.439287 + 0.430084I
a = 0.369850 + 0.809872I
b = 0.826171 0.878602I
1.92386 0.70569I 4.73633 1.49377I
u = 0.439287 0.430084I
a = 0.369850 0.809872I
b = 0.826171 + 0.878602I
1.92386 + 0.70569I 4.73633 + 1.49377I
u = 0.458556 + 0.245803I
a = 0.926842 + 0.254373I
b = 3.14697 0.02721I
1.01770 + 3.12959I 11.2117 + 9.6931I
u = 0.458556 0.245803I
a = 0.926842 0.254373I
b = 3.14697 + 0.02721I
1.01770 3.12959I 11.2117 9.6931I
u = 0.98309 + 1.11338I
a = 1.042320 0.030462I
b = 1.28757 0.91513I
5.88754 + 9.99849I 0
u = 0.98309 1.11338I
a = 1.042320 + 0.030462I
b = 1.28757 + 0.91513I
5.88754 9.99849I 0
u = 0.164101 + 0.449464I
a = 0.688933 + 1.140020I
b = 0.744682 + 0.591989I
1.35739 + 0.57043I 7.08701 0.51436I
u = 0.164101 0.449464I
a = 0.688933 1.140020I
b = 0.744682 0.591989I
1.35739 0.57043I 7.08701 + 0.51436I
u = 0.95044 + 1.21876I
a = 0.641001 + 0.045558I
b = 0.825830 0.718272I
1.17907 4.49890I 0
u = 0.95044 1.21876I
a = 0.641001 0.045558I
b = 0.825830 + 0.718272I
1.17907 + 4.49890I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.11398 + 1.11513I
a = 0.963889 + 0.084455I
b = 1.33509 + 1.02179I
0.7775 + 14.2581I 0
u = 1.11398 1.11513I
a = 0.963889 0.084455I
b = 1.33509 1.02179I
0.7775 14.2581I 0
u = 0.387269
a = 1.11745
b = 3.36262
3.05082 23.9460
u = 1.25742 + 1.12500I
a = 0.221918 0.430829I
b = 0.738517 + 0.066545I
5.25717 1.92366I 0
u = 1.25742 1.12500I
a = 0.221918 + 0.430829I
b = 0.738517 0.066545I
5.25717 + 1.92366I 0
u = 1.50650 + 0.79307I
a = 0.147496 + 0.451688I
b = 0.517015 + 0.004012I
1.64294 + 1.58754I 0
u = 1.50650 0.79307I
a = 0.147496 0.451688I
b = 0.517015 0.004012I
1.64294 1.58754I 0
u = 1.20335 + 1.23704I
a = 0.605373 + 0.022172I
b = 0.801305 + 0.846956I
3.65031 8.13712I 0
u = 1.20335 1.23704I
a = 0.605373 0.022172I
b = 0.801305 0.846956I
3.65031 + 8.13712I 0
u = 1.11069 + 1.42621I
a = 0.264870 + 0.387539I
b = 0.901140 0.076911I
1.04931 5.53805I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.11069 1.42621I
a = 0.264870 0.387539I
b = 0.901140 + 0.076911I
1.04931 + 5.53805I 0
9
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
u
41
+ u
40
+ ··· + 7u 1
c
2
u
41
7u
40
+ ··· u + 1
c
4
u
41
+ 3u
40
+ ··· + u + 1
c
5
u
41
u
40
+ ··· + 131u 17
c
6
, c
9
, c
10
u
41
+ u
40
+ ··· + 3u 1
c
7
u
41
u
40
+ ··· + 289u + 77
c
8
u
41
3u
40
+ ··· 129u + 31
10
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
41
29y
40
+ ··· 7y 1
c
2
y
41
+ 3y
40
+ ··· 7y 1
c
4
y
41
+ 7y
40
+ ··· 3y 1
c
5
y
41
17y
40
+ ··· 2627y 289
c
6
, c
9
, c
10
y
41
+ 35y
40
+ ··· 3y 1
c
7
y
41
25y
40
+ ··· 76331y 5929
c
8
y
41
45y
40
+ ··· + 24081y 961
11