10
85
(K10a
86
)
A knot diagram
1
Linearized knot diagam
4 5 1 8 9 10 3 2 6 7
Solving Sequence
6,9
10 7
2,5
3 8 4 1
c
9
c
6
c
5
c
2
c
8
c
4
c
1
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h60294783u
28
88287773u
27
+ ··· + 34606354b 88284553,
32141431u
28
+ 46155247u
27
+ ··· + 17303177a + 15723776, u
29
2u
28
+ ··· 5u + 1i
I
u
2
= hb 1, a + 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h6.03 × 10
7
u
28
8.83 × 10
7
u
27
+ · · · + 3.46 × 10
7
b 8.83 × 10
7
, 3.21 ×
10
7
u
28
+4.62×10
7
u
27
+· · · +1.73×10
7
a+1.57×10
7
, u
29
2u
28
+· · · 5u +1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
2
=
1.85755u
28
2.66744u
27
+ ··· + 14.0229u 0.908722
1.74230u
28
+ 2.55120u
27
+ ··· 12.6457u + 2.55111
a
5
=
u
u
a
3
=
1.82836u
28
2.55221u
27
+ ··· + 13.5669u 0.794482
1.71312u
28
+ 2.43597u
27
+ ··· 12.1898u + 2.43687
a
8
=
3.97113u
28
4.76259u
27
+ ··· + 10.6810u 4.64851
4.16350u
28
+ 4.96257u
27
+ ··· 16.5831u + 4.96513
a
4
=
1.79416u
28
+ 2.57695u
27
+ ··· 12.7088u + 1.57715
1.79416u
28
2.57695u
27
+ ··· + 12.7088u 2.57715
a
1
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
289657216
17303177
u
28
414590110
17303177
u
27
+ ··· +
1326964710
17303177
u
307662332
17303177
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
29
+ 2u
28
+ ··· 9u + 1
c
2
u
29
5u
28
+ ··· + 2u + 2
c
4
u
29
+ 2u
28
+ ··· + u + 1
c
5
, c
6
, c
9
c
10
u
29
2u
28
+ ··· 5u + 1
c
7
u
29
4u
27
+ ··· 277u + 173
c
8
u
29
2u
28
+ ··· 51u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
29
24y
28
+ ··· + 35y 1
c
2
y
29
+ 9y
28
+ ··· 8y 4
c
4
y
29
+ 4y
28
+ ··· y 1
c
5
, c
6
, c
9
c
10
y
29
36y
28
+ ··· y 1
c
7
y
29
8y
28
+ ··· 224637y 29929
c
8
y
29
36y
28
+ ··· + 2499y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.945899 + 0.527377I
a = 1.42859 0.46825I
b = 1.23966 0.80863I
5.88176 9.11420I 9.68617 + 7.34304I
u = 0.945899 0.527377I
a = 1.42859 + 0.46825I
b = 1.23966 + 0.80863I
5.88176 + 9.11420I 9.68617 7.34304I
u = 0.919400 + 0.642162I
a = 0.315900 + 0.817663I
b = 0.838796 0.254515I
5.23846 + 0.21078I 14.1588 + 0.1661I
u = 0.919400 0.642162I
a = 0.315900 0.817663I
b = 0.838796 + 0.254515I
5.23846 0.21078I 14.1588 0.1661I
u = 0.852692 + 0.102964I
a = 2.16375 + 1.13712I
b = 0.698160 0.148828I
4.90102 1.77997I 15.0441 + 4.1634I
u = 0.852692 0.102964I
a = 2.16375 1.13712I
b = 0.698160 + 0.148828I
4.90102 + 1.77997I 15.0441 4.1634I
u = 0.778126 + 0.317868I
a = 1.21478 + 0.99243I
b = 0.813260 + 0.652109I
1.06268 4.13663I 7.22942 + 7.89079I
u = 0.778126 0.317868I
a = 1.21478 0.99243I
b = 0.813260 0.652109I
1.06268 + 4.13663I 7.22942 7.89079I
u = 0.072018 + 0.813066I
a = 0.055406 0.155414I
b = 0.965881 0.630905I
2.76973 + 4.67347I 7.79912 5.64410I
u = 0.072018 0.813066I
a = 0.055406 + 0.155414I
b = 0.965881 + 0.630905I
2.76973 4.67347I 7.79912 + 5.64410I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.22499
a = 0.486025
b = 0.0200655
2.40006 1.29980
u = 0.696417
a = 3.92323
b = 3.47362
2.85586 37.1850
u = 0.652302 + 0.186228I
a = 0.677568 0.199223I
b = 0.726039 0.441283I
1.260030 + 0.425153I 8.09157 0.86414I
u = 0.652302 0.186228I
a = 0.677568 + 0.199223I
b = 0.726039 + 0.441283I
1.260030 0.425153I 8.09157 + 0.86414I
u = 0.066518 + 0.465152I
a = 0.922681 + 0.795965I
b = 0.575911 + 0.420194I
1.04879 + 1.39671I 0.58532 2.57538I
u = 0.066518 0.465152I
a = 0.922681 0.795965I
b = 0.575911 0.420194I
1.04879 1.39671I 0.58532 + 2.57538I
u = 1.62115 + 0.04828I
a = 1.28657 + 0.61647I
b = 1.12014 1.06805I
9.19873 1.27855I 0
u = 1.62115 0.04828I
a = 1.28657 0.61647I
b = 1.12014 + 1.06805I
9.19873 + 1.27855I 0
u = 1.64256
a = 3.72388
b = 3.32176
11.1512 0
u = 1.65082 + 0.07616I
a = 1.56763 + 0.18293I
b = 0.985626 + 0.801694I
9.53565 + 5.57255I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65082 0.07616I
a = 1.56763 0.18293I
b = 0.985626 0.801694I
9.53565 5.57255I 0
u = 1.67141 + 0.02331I
a = 1.76938 + 0.66852I
b = 0.801753 + 0.136783I
13.80520 + 2.24218I 0
u = 1.67141 0.02331I
a = 1.76938 0.66852I
b = 0.801753 0.136783I
13.80520 2.24218I 0
u = 1.69430 + 0.14926I
a = 2.01420 + 0.06571I
b = 1.47276 0.89148I
15.0062 + 11.7978I 0
u = 1.69430 0.14926I
a = 2.01420 0.06571I
b = 1.47276 + 0.89148I
15.0062 11.7978I 0
u = 0.175263 + 0.221780I
a = 3.00284 + 0.56107I
b = 0.809729 0.865243I
1.92999 + 0.70792I 4.69463 + 1.16490I
u = 0.175263 0.221780I
a = 3.00284 0.56107I
b = 0.809729 + 0.865243I
1.92999 0.70792I 4.69463 1.16490I
u = 1.71056 + 0.17143I
a = 1.059070 + 0.505719I
b = 0.934773 + 0.132892I
14.3721 3.4330I 0
u = 1.71056 0.17143I
a = 1.059070 0.505719I
b = 0.934773 0.132892I
14.3721 + 3.4330I 0
7
II. I
u
2
= hb 1, a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
9
=
1
0
a
10
=
1
1
a
7
=
1
0
a
2
=
1
1
a
5
=
1
1
a
3
=
1
1
a
8
=
0
1
a
4
=
1
2
a
1
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
u + 1
c
2
u
c
3
, c
7
, c
8
c
9
, c
10
u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
y 1
c
2
y
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
29
+ 2u
28
+ ··· 9u + 1)
c
2
u(u
29
5u
28
+ ··· + 2u + 2)
c
3
(u 1)(u
29
+ 2u
28
+ ··· 9u + 1)
c
4
(u + 1)(u
29
+ 2u
28
+ ··· + u + 1)
c
5
, c
6
(u + 1)(u
29
2u
28
+ ··· 5u + 1)
c
7
(u 1)(u
29
4u
27
+ ··· 277u + 173)
c
8
(u 1)(u
29
2u
28
+ ··· 51u + 1)
c
9
, c
10
(u 1)(u
29
2u
28
+ ··· 5u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)(y
29
24y
28
+ ··· + 35y 1)
c
2
y(y
29
+ 9y
28
+ ··· 8y 4)
c
4
(y 1)(y
29
+ 4y
28
+ ··· y 1)
c
5
, c
6
, c
9
c
10
(y 1)(y
29
36y
28
+ ··· y 1)
c
7
(y 1)(y
29
8y
28
+ ··· 224637y 29929)
c
8
(y 1)(y
29
36y
28
+ ··· + 2499y 1)
13