12a
0905
(K12a
0905
)
A knot diagram
1
Linearized knot diagam
4 6 8 1 9 11 10 12 2 7 3 5
Solving Sequence
6,11 3,7
12 2 10 8 4 1 9 5
c
6
c
11
c
2
c
10
c
7
c
3
c
1
c
9
c
5
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
u
8
5u
7
4u
6
8u
5
5u
4
4u
3
u
2
+ b u + 1, u
14
3u
13
+ ··· + 3a + 9,
u
15
+ 3u
14
+ ··· 6u 3i
I
u
2
= h−562052542293u
41
4221685298499u
40
+ ··· + 1614846925093b + 7465820808608,
7465820808608u
41
+ 62536829180329u
40
+ ··· + 8074234625465a + 154585802344000,
u
42
+ 8u
41
+ ··· + 40u + 5i
I
u
3
= h3u
23
17u
22
+ ··· + b + 4, 4u
23
a 5u
23
+ ··· + 9a 20, u
24
5u
23
+ ··· + 4u + 1i
I
u
4
= h2u
21
14u
20
+ ··· + b 3, 3u
21
19u
20
+ ··· + a 4, u
22
7u
21
+ ··· 8u + 1i
I
u
5
= h−u
3
au + u
2
+ b 2u + 1, u
3
a + u
3
+ a
2
+ 2au + 2u + 1, u
4
u
3
+ 3u
2
2u + 1i
I
u
6
= hu
3
u
2
+ b + 2u 1, u
3
+ a + 2u, u
4
u
3
+ 3u
2
2u + 1i
I
u
7
= h−au u
2
+ b + u 1, u
2
a + a
2
u
2
+ a 1, u
3
u
2
+ 2u 1i
I
v
1
= ha, b + 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 146 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
9
u
8
+· · ·+b+1, u
14
3u
13
+· · ·+3a+9, u
15
+3u
14
+· · ·6u3i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
1
3
u
14
+ u
13
+ ···
8
3
u 3
u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 4u
3
+ u
2
+ u 1
a
7
=
1
u
2
a
12
=
1
3
u
14
+ u
13
+ ··· +
1
3
u 1
u
13
+ 2u
12
+ ··· 2u
2
1
a
2
=
1
3
u
14
+ u
13
+ ···
11
3
u 2
u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 4u
3
+ u
2
+ u 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
2
3
u
14
u
13
+ ···
5
3
u 2
u
13
3u
12
+ ··· + 4u + 2
a
1
=
2
3
u
14
3u
13
+ ··· +
13
3
u
2
+
7
3
u
u
14
+ 3u
13
+ ··· u 1
a
9
=
1
3
u
14
+ u
13
+ ···
5
3
u 1
u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 4u
3
+ u
2
+ u 1
a
5
=
1
3
u
14
1
3
u
12
+ ···
1
3
u
2
7
3
u
u
13
2u
12
+ ··· + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
12
6u
11
22u
10
44u
9
84u
8
120u
7
142u
6
144u
5
102u
4
64u
3
20u
2
+ 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
u
15
3u
14
+ ··· 6u + 3
c
2
, c
5
, c
8
c
11
u
15
+ u
14
+ ··· 7u
2
+ 1
c
3
, c
9
u
15
6u
14
+ ··· 24u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
y
15
+ 17y
14
+ ··· + 6y 9
c
2
, c
5
, c
8
c
11
y
15
11y
14
+ ··· + 14y 1
c
3
, c
9
y
15
6y
14
+ ··· + 224y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.795561 + 0.469588I
a = 0.66756 + 1.38872I
b = 1.18321 + 0.79133I
1.22894 + 9.98581I 2.50504 9.39516I
u = 0.795561 0.469588I
a = 0.66756 1.38872I
b = 1.18321 0.79133I
1.22894 9.98581I 2.50504 + 9.39516I
u = 0.025319 + 0.816586I
a = 0.509860 0.477335I
b = 0.376877 + 0.428430I
1.65484 1.30957I 1.85503 + 5.43942I
u = 0.025319 0.816586I
a = 0.509860 + 0.477335I
b = 0.376877 0.428430I
1.65484 + 1.30957I 1.85503 5.43942I
u = 0.538585 + 0.452447I
a = 1.298690 0.499892I
b = 0.925630 + 0.318355I
2.11810 0.75734I 1.216337 0.256399I
u = 0.538585 0.452447I
a = 1.298690 + 0.499892I
b = 0.925630 0.318355I
2.11810 + 0.75734I 1.216337 + 0.256399I
u = 0.05955 + 1.44554I
a = 0.511356 + 0.845268I
b = 1.25232 + 0.68885I
12.18430 0.89198I 5.76532 1.13067I
u = 0.05955 1.44554I
a = 0.511356 0.845268I
b = 1.25232 0.68885I
12.18430 + 0.89198I 5.76532 + 1.13067I
u = 0.17394 + 1.44037I
a = 0.383006 0.328634I
b = 0.539974 0.494505I
8.82530 4.42382I 1.11143 + 2.80902I
u = 0.17394 1.44037I
a = 0.383006 + 0.328634I
b = 0.539974 + 0.494505I
8.82530 + 4.42382I 1.11143 2.80902I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.34009 + 1.46037I
a = 0.223627 + 0.790180I
b = 1.230010 0.057843I
13.5931 + 6.4489I 7.27407 4.21866I
u = 0.34009 1.46037I
a = 0.223627 0.790180I
b = 1.230010 + 0.057843I
13.5931 6.4489I 7.27407 + 4.21866I
u = 0.436338
a = 0.713570
b = 0.311358
0.991071 10.5830
u = 0.30274 + 1.53981I
a = 0.402502 1.039480I
b = 1.47873 0.93447I
14.3514 + 18.1469I 3.57429 8.51279I
u = 0.30274 1.53981I
a = 0.402502 + 1.039480I
b = 1.47873 + 0.93447I
14.3514 18.1469I 3.57429 + 8.51279I
6
II. I
u
2
= h−5.62 × 10
11
u
41
4.22 × 10
12
u
40
+ · · · + 1.61 × 10
12
b + 7.47 ×
10
12
, 7.47 × 10
12
u
41
+ 6.25 × 10
13
u
40
+ · · · + 8.07 × 10
12
a + 1.55 ×
10
14
, u
42
+ 8u
41
+ · · · + 40u + 5i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.924647u
41
7.74523u
40
+ ··· 92.0620u 19.1456
0.348053u
41
+ 2.61429u
40
+ ··· 17.8403u 4.62324
a
7
=
1
u
2
a
12
=
0.0122164u
41
0.389943u
40
+ ··· 63.7656u 7.49795
0.487674u
41
+ 5.20588u
40
+ ··· + 8.98661u + 0.0610821
a
2
=
1.27270u
41
10.3595u
40
+ ··· 74.2216u 14.5223
0.348053u
41
+ 2.61429u
40
+ ··· 17.8403u 4.62324
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.836271u
41
5.05200u
40
+ ··· 65.6783u 14.8968
1.14490u
41
9.64683u
40
+ ··· 56.7466u 9.60670
a
1
=
0.528605u
41
+ 3.36723u
40
+ ··· 8.24064u 1.10136
0.314496u
41
1.57614u
40
+ ··· 7.98768u 1.64323
a
9
=
0.261345u
41
+ 2.30222u
40
+ ··· + 0.106070u + 1.77076
0.347361u
41
2.64299u
40
+ ··· 3.78133u 0.430082
a
5
=
0.00701951u
41
+ 0.906686u
40
+ ··· + 16.1301u + 2.32016
0.615275u
41
4.95154u
40
+ ··· 14.9001u 1.83426
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
11300023370492
1614846925093
u
41
+
83794710538956
1614846925093
u
40
+ ··· +
592947538978880
1614846925093
u +
103946797867048
1614846925093
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
u
42
8u
41
+ ··· 40u + 5
c
2
, c
5
, c
8
c
11
u
42
13u
40
+ ··· u + 1
c
3
, c
9
(u
21
+ 3u
20
+ ··· u 5)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
y
42
+ 40y
41
+ ··· + 100y + 25
c
2
, c
5
, c
8
c
11
y
42
26y
41
+ ··· 127y + 1
c
3
, c
9
(y
21
+ 9y
20
+ ··· 319y 25)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.853330 + 0.522684I
a = 0.59606 1.28608I
b = 1.18084 0.78590I
7.6520 + 13.9242I 0. 8.90479I
u = 0.853330 0.522684I
a = 0.59606 + 1.28608I
b = 1.18084 + 0.78590I
7.6520 13.9242I 0. + 8.90479I
u = 0.712897 + 0.659919I
a = 1.002160 + 0.322440I
b = 0.927217 0.431475I
1.79638 4.88565I 0. + 5.93325I
u = 0.712897 0.659919I
a = 1.002160 0.322440I
b = 0.927217 + 0.431475I
1.79638 + 4.88565I 0. 5.93325I
u = 0.593838 + 0.841447I
a = 0.112224 + 0.107302I
b = 0.156931 + 0.030710I
0.50781 2.31740I 0
u = 0.593838 0.841447I
a = 0.112224 0.107302I
b = 0.156931 0.030710I
0.50781 + 2.31740I 0
u = 0.839691 + 0.678343I
a = 0.943185 0.221439I
b = 0.942195 + 0.453863I
8.04725 8.28146I 0
u = 0.839691 0.678343I
a = 0.943185 + 0.221439I
b = 0.942195 0.453863I
8.04725 + 8.28146I 0
u = 0.731574 + 0.444637I
a = 0.267734 0.175635I
b = 0.273961 + 0.009446I
2.78697 1.47830I 3.32231 + 0.64878I
u = 0.731574 0.444637I
a = 0.267734 + 0.175635I
b = 0.273961 0.009446I
2.78697 + 1.47830I 3.32231 0.64878I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.775939 + 0.274659I
a = 1.401210 0.008524I
b = 1.084910 0.391468I
8.03896 + 2.27731I 3.60405 1.97458I
u = 0.775939 0.274659I
a = 1.401210 + 0.008524I
b = 1.084910 + 0.391468I
8.03896 2.27731I 3.60405 + 1.97458I
u = 0.682700 + 0.436541I
a = 0.67403 1.62063I
b = 1.16763 0.81216I
1.79638 + 4.88565I 0.60467 5.93325I
u = 0.682700 0.436541I
a = 0.67403 + 1.62063I
b = 1.16763 + 0.81216I
1.79638 4.88565I 0.60467 + 5.93325I
u = 0.518391 + 0.574589I
a = 0.25967 + 1.72822I
b = 1.127630 + 0.746695I
9.22998 + 1.82910I 4.46798 3.91898I
u = 0.518391 0.574589I
a = 0.25967 1.72822I
b = 1.127630 0.746695I
9.22998 1.82910I 4.46798 + 3.91898I
u = 0.682538 + 1.019720I
a = 0.179954 0.091678I
b = 0.216311 0.120929I
4.29895 3.75943I 0
u = 0.682538 1.019720I
a = 0.179954 + 0.091678I
b = 0.216311 + 0.120929I
4.29895 + 3.75943I 0
u = 0.052768 + 1.314890I
a = 0.355444 + 0.977726I
b = 1.266840 + 0.518962I
10.2049 0
u = 0.052768 1.314890I
a = 0.355444 0.977726I
b = 1.266840 0.518962I
10.2049 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.027560 + 1.319270I
a = 0.706441 + 0.342428I
b = 0.471226 + 0.922552I
2.78697 1.47830I 0
u = 0.027560 1.319270I
a = 0.706441 0.342428I
b = 0.471226 0.922552I
2.78697 + 1.47830I 0
u = 0.082150 + 1.381150I
a = 0.871679 0.724775I
b = 0.92941 1.26346I
4.29895 + 3.75943I 0
u = 0.082150 1.381150I
a = 0.871679 + 0.724775I
b = 0.92941 + 1.26346I
4.29895 3.75943I 0
u = 0.014975 + 1.414050I
a = 0.451593 0.837497I
b = 1.191030 0.626035I
6.62865 0.11622I 0
u = 0.014975 1.414050I
a = 0.451593 + 0.837497I
b = 1.191030 + 0.626035I
6.62865 + 0.11622I 0
u = 0.25079 + 1.45386I
a = 0.056197 0.851127I
b = 1.251510 0.131755I
8.03896 + 2.27731I 0
u = 0.25079 1.45386I
a = 0.056197 + 0.851127I
b = 1.251510 + 0.131755I
8.03896 2.27731I 0
u = 0.24529 + 1.48742I
a = 0.492155 1.095830I
b = 1.50924 1.00084I
8.04725 + 8.28146I 0
u = 0.24529 1.48742I
a = 0.492155 + 1.095830I
b = 1.50924 + 1.00084I
8.04725 8.28146I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.17608 + 1.50947I
a = 0.565601 + 0.999475I
b = 1.40909 + 1.02974I
16.0135 + 4.3954I 0
u = 0.17608 1.50947I
a = 0.565601 0.999475I
b = 1.40909 1.02974I
16.0135 4.3954I 0
u = 0.28548 + 1.51045I
a = 0.425571 + 1.072440I
b = 1.49838 + 0.94896I
7.6520 + 13.9242I 0
u = 0.28548 1.51045I
a = 0.425571 1.072440I
b = 1.49838 0.94896I
7.6520 13.9242I 0
u = 0.16988 + 1.54466I
a = 0.058448 + 0.687065I
b = 1.051350 + 0.207003I
9.22998 1.82910I 0
u = 0.16988 1.54466I
a = 0.058448 0.687065I
b = 1.051350 0.207003I
9.22998 + 1.82910I 0
u = 0.348258 + 0.115828I
a = 0.24840 3.12015I
b = 0.447909 1.057840I
0.50781 + 2.31740I 1.63390 + 8.03476I
u = 0.348258 0.115828I
a = 0.24840 + 3.12015I
b = 0.447909 + 1.057840I
0.50781 2.31740I 1.63390 8.03476I
u = 0.19258 + 1.63607I
a = 0.008104 0.588711I
b = 0.961610 0.126633I
16.0135 4.3954I 0
u = 0.19258 1.63607I
a = 0.008104 + 0.588711I
b = 0.961610 + 0.126633I
16.0135 + 4.3954I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.135742 + 0.185761I
a = 3.19264 + 3.47066I
b = 1.078090 + 0.121956I
6.62865 0.11622I 5.95241 0.33252I
u = 0.135742 0.185761I
a = 3.19264 3.47066I
b = 1.078090 0.121956I
6.62865 + 0.11622I 5.95241 + 0.33252I
14
III. I
u
3
=
h3u
23
17u
22
+· · ·+b+4, 4u
23
a5u
23
+· · ·+9a20, u
24
5u
23
+· · ·+4u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
a
3u
23
+ 17u
22
+ ··· 7u 4
a
7
=
1
u
2
a
12
=
3u
23
a u
23
+ ··· + 4a 5
1
a
2
=
3u
23
17u
22
+ ··· + a + 4
3u
23
+ 17u
22
+ ··· 7u 4
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
3u
23
17u
22
+ ··· + a + 6
2u
23
+ 11u
22
+ ··· 4u 2
a
1
=
u
23
+ 5u
22
+ ··· + a 5
u
16
a + u
16
+ ··· + au + 1
a
9
=
2u
23
a u
23
+ ··· + 4a 6
u
21
a 6u
20
a + ··· + 2a 1
a
5
=
u
22
a u
23
+ ··· a 5
u
17
a 3u
16
a + ··· + a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
23
+ 48u
22
232u
21
+ 784u
20
2224u
19
+ 5216u
18
10568u
17
+ 18508u
16
28364u
15
+ 37944u
14
44324u
13
+ 44672u
12
38328u
11
+
27016u
10
14640u
9
+ 4908u
8
+ 232u
7
1516u
6
+ 800u
5
8u
4
232u
3
+ 120u
2
16u 38
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(u
24
+ 5u
23
+ ··· 4u + 1)
2
c
2
, c
5
, c
8
c
11
u
48
u
47
+ ··· + 36u + 61
c
3
, c
9
(u
24
+ u
23
+ ··· 44u + 8)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(y
24
+ 23y
23
+ ··· 16y + 1)
2
c
2
, c
5
, c
8
c
11
y
48
+ 17y
47
+ ··· 19840y + 3721
c
3
, c
9
(y
24
+ 9y
23
+ ··· 1040y + 64)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.800271 + 0.533236I
a = 0.422845 + 0.739232I
b = 0.509225 + 0.473403I
0.96728 2.64620I 16.0316 + 9.3014I
u = 0.800271 + 0.533236I
a = 0.167698 0.703293I
b = 0.732576 0.366110I
0.96728 2.64620I 16.0316 + 9.3014I
u = 0.800271 0.533236I
a = 0.422845 0.739232I
b = 0.509225 0.473403I
0.96728 + 2.64620I 16.0316 9.3014I
u = 0.800271 0.533236I
a = 0.167698 + 0.703293I
b = 0.732576 + 0.366110I
0.96728 + 2.64620I 16.0316 9.3014I
u = 0.878799 + 0.336754I
a = 0.630433 0.599955I
b = 0.294705 0.322645I
2.66736 1.66203I 6.75738 + 1.82032I
u = 0.878799 + 0.336754I
a = 0.169737 + 0.432187I
b = 0.756061 + 0.314940I
2.66736 1.66203I 6.75738 + 1.82032I
u = 0.878799 0.336754I
a = 0.630433 + 0.599955I
b = 0.294705 + 0.322645I
2.66736 + 1.66203I 6.75738 1.82032I
u = 0.878799 0.336754I
a = 0.169737 0.432187I
b = 0.756061 0.314940I
2.66736 + 1.66203I 6.75738 1.82032I
u = 0.832655 + 0.672098I
a = 0.367542 0.698741I
b = 0.497125 0.651920I
3.62403 3.95529I 3.21624 + 9.39142I
u = 0.832655 + 0.672098I
a = 0.021153 + 0.765867I
b = 0.775658 + 0.334786I
3.62403 3.95529I 3.21624 + 9.39142I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.832655 0.672098I
a = 0.367542 + 0.698741I
b = 0.497125 + 0.651920I
3.62403 + 3.95529I 3.21624 9.39142I
u = 0.832655 0.672098I
a = 0.021153 0.765867I
b = 0.775658 0.334786I
3.62403 + 3.95529I 3.21624 9.39142I
u = 0.086298 + 0.746831I
a = 0.376144 1.063920I
b = 0.853689 1.098230I
7.62597 5.15237I 5.88005 + 4.48367I
u = 0.086298 + 0.746831I
a = 1.32079 + 1.29570I
b = 0.827028 0.189102I
7.62597 5.15237I 5.88005 + 4.48367I
u = 0.086298 0.746831I
a = 0.376144 + 1.063920I
b = 0.853689 + 1.098230I
7.62597 + 5.15237I 5.88005 4.48367I
u = 0.086298 0.746831I
a = 1.32079 1.29570I
b = 0.827028 + 0.189102I
7.62597 + 5.15237I 5.88005 4.48367I
u = 0.001993 + 1.316790I
a = 0.714558 0.020052I
b = 1.42656 + 1.02275I
2.66736 1.66203I 6.75738 + 1.82032I
u = 0.001993 + 1.316790I
a = 0.778333 + 1.082180I
b = 0.024981 + 0.940966I
2.66736 1.66203I 6.75738 + 1.82032I
u = 0.001993 1.316790I
a = 0.714558 + 0.020052I
b = 1.42656 1.02275I
2.66736 + 1.66203I 6.75738 1.82032I
u = 0.001993 1.316790I
a = 0.778333 1.082180I
b = 0.024981 0.940966I
2.66736 + 1.66203I 6.75738 1.82032I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.066677 + 1.368660I
a = 0.347208 0.433644I
b = 0.14080 2.27520I
3.62403 + 3.95529I 3.21624 9.39142I
u = 0.066677 + 1.368660I
a = 1.65342 0.18342I
b = 0.570359 0.504124I
3.62403 + 3.95529I 3.21624 9.39142I
u = 0.066677 1.368660I
a = 0.347208 + 0.433644I
b = 0.14080 + 2.27520I
3.62403 3.95529I 3.21624 + 9.39142I
u = 0.066677 1.368660I
a = 1.65342 + 0.18342I
b = 0.570359 + 0.504124I
3.62403 3.95529I 3.21624 + 9.39142I
u = 0.09853 + 1.41543I
a = 0.177972 + 0.481724I
b = 0.57639 + 2.39043I
10.95020 + 8.21862I 4.30637 9.35603I
u = 0.09853 + 1.41543I
a = 1.70890 0.28826I
b = 0.664312 + 0.299373I
10.95020 + 8.21862I 4.30637 9.35603I
u = 0.09853 1.41543I
a = 0.177972 0.481724I
b = 0.57639 2.39043I
10.95020 8.21862I 4.30637 + 9.35603I
u = 0.09853 1.41543I
a = 1.70890 + 0.28826I
b = 0.664312 0.299373I
10.95020 8.21862I 4.30637 + 9.35603I
u = 0.18804 + 1.48037I
a = 0.334661 1.114890I
b = 0.773120 0.589137I
7.62597 5.15237I 5.88005 + 4.48367I
u = 0.18804 + 1.48037I
a = 0.326363 + 0.563705I
b = 1.58751 + 0.70507I
7.62597 5.15237I 5.88005 + 4.48367I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.18804 1.48037I
a = 0.334661 + 1.114890I
b = 0.773120 + 0.589137I
7.62597 + 5.15237I 5.88005 4.48367I
u = 0.18804 1.48037I
a = 0.326363 0.563705I
b = 1.58751 0.70507I
7.62597 + 5.15237I 5.88005 4.48367I
u = 0.28419 + 1.52691I
a = 0.420040 0.724771I
b = 1.181840 0.532265I
5.70851 6.62112I 4.00000 + 11.74539I
u = 0.28419 + 1.52691I
a = 0.197684 + 0.810796I
b = 0.987293 + 0.847336I
5.70851 6.62112I 4.00000 + 11.74539I
u = 0.28419 1.52691I
a = 0.420040 + 0.724771I
b = 1.181840 + 0.532265I
5.70851 + 6.62112I 4.00000 11.74539I
u = 0.28419 1.52691I
a = 0.197684 0.810796I
b = 0.987293 0.847336I
5.70851 + 6.62112I 4.00000 11.74539I
u = 0.372821 + 0.191675I
a = 0.20434 + 2.08277I
b = 0.66433 + 1.43354I
5.70851 + 6.62112I 4.18117 11.74539I
u = 0.372821 + 0.191675I
a = 2.97294 + 2.31667I
b = 0.475400 + 0.737334I
5.70851 + 6.62112I 4.18117 11.74539I
u = 0.372821 0.191675I
a = 0.20434 2.08277I
b = 0.66433 1.43354I
5.70851 6.62112I 4.18117 + 11.74539I
u = 0.372821 0.191675I
a = 2.97294 2.31667I
b = 0.475400 0.737334I
5.70851 6.62112I 4.18117 + 11.74539I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.30095 + 1.58206I
a = 0.492521 + 0.743260I
b = 1.117930 + 0.448505I
10.95020 8.21862I 4.30637 + 9.35603I
u = 0.30095 + 1.58206I
a = 0.143867 0.733996I
b = 1.02766 1.00288I
10.95020 8.21862I 4.30637 + 9.35603I
u = 0.30095 1.58206I
a = 0.492521 0.743260I
b = 1.117930 0.448505I
10.95020 + 8.21862I 4.30637 9.35603I
u = 0.30095 1.58206I
a = 0.143867 + 0.733996I
b = 1.02766 + 1.00288I
10.95020 + 8.21862I 4.30637 9.35603I
u = 0.335169 + 0.072286I
a = 0.22517 2.55447I
b = 0.37071 1.47486I
0.96728 + 2.64620I 16.0316 9.3014I
u = 0.335169 + 0.072286I
a = 1.96371 3.97683I
b = 0.260123 0.839904I
0.96728 + 2.64620I 16.0316 9.3014I
u = 0.335169 0.072286I
a = 0.22517 + 2.55447I
b = 0.37071 + 1.47486I
0.96728 2.64620I 16.0316 + 9.3014I
u = 0.335169 0.072286I
a = 1.96371 + 3.97683I
b = 0.260123 + 0.839904I
0.96728 2.64620I 16.0316 + 9.3014I
22
IV.
I
u
4
= h2u
21
14u
20
+· · ·+b 3, 3u
21
19u
20
+· · ·+a 4, u
22
7u
21
+· · ·8u +1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
3u
21
+ 19u
20
+ ··· 34u + 4
2u
21
+ 14u
20
+ ··· 20u + 3
a
7
=
1
u
2
a
12
=
u
20
+ 7u
19
+ ··· + 30u 8
u
21
+ 7u
20
+ ··· + 30u
2
7u
a
2
=
u
21
+ 5u
20
+ ··· 14u + 1
2u
21
+ 14u
20
+ ··· 20u + 3
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
2u
21
+ 12u
20
+ ··· 26u + 3
2u
21
+ 14u
20
+ ··· 21u + 3
a
1
=
u
21
8u
20
+ ··· + 21u 5
u
21
+ 7u
20
+ ··· + 10u
2
3u
a
9
=
u
21
7u
20
+ ··· + 37u 6
u
3
u
2
+ 2u 1
a
5
=
u
21
+ 7u
20
+ ··· 32u + 5
u
6
2u
5
+ 5u
4
6u
3
+ 6u
2
4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
21
80u
20
+ 384u
19
1324u
18
+ 3749u
17
8823u
16
+
17896u
15
31489u
14
+ 48734u
13
66430u
12
+ 80127u
11
85246u
10
+ 79895u
9
65373u
8
+ 46397u
7
28047u
6
+ 14285u
5
5940u
4
+ 2052u
3
566u
2
+ 165u 22
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
12
u
22
7u
21
+ ··· 8u + 1
c
2
, c
5
, c
8
c
11
u
22
+ u
21
+ ··· u + 1
c
3
, c
9
(u
11
+ 2u
9
+ 5u
7
+ 2u
6
+ 6u
5
+ 3u
4
+ 5u
3
+ 2u
2
+ u + 1)
2
c
4
, c
10
u
22
+ 7u
21
+ ··· + 8u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
y
22
+ 21y
21
+ ··· + 12y + 1
c
2
, c
5
, c
8
c
11
y
22
+ 7y
21
+ ··· 3y + 1
c
3
, c
9
(y
11
+ 4y
10
+ ··· 3y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.701458 + 0.669132I
a = 0.159011 0.625712I
b = 0.530223 0.332512I
0.42163 2.68760I 3.09765 + 11.77435I
u = 0.701458 0.669132I
a = 0.159011 + 0.625712I
b = 0.530223 + 0.332512I
0.42163 + 2.68760I 3.09765 11.77435I
u = 0.306394 + 1.001770I
a = 0.712038 0.152788I
b = 0.371222 + 0.666483I
1.24246 1.82703 + 0.I
u = 0.306394 1.001770I
a = 0.712038 + 0.152788I
b = 0.371222 0.666483I
1.24246 1.82703 + 0.I
u = 0.977693 + 0.488890I
a = 0.508696 + 0.517538I
b = 0.750367 + 0.257297I
3.38298 2.17320I 3.73471 + 5.95234I
u = 0.977693 0.488890I
a = 0.508696 0.517538I
b = 0.750367 0.257297I
3.38298 + 2.17320I 3.73471 5.95234I
u = 0.808804 + 0.951830I
a = 0.230626 + 0.430869I
b = 0.596645 + 0.128972I
4.68143 4.04785I 8.87355 + 7.54462I
u = 0.808804 0.951830I
a = 0.230626 0.430869I
b = 0.596645 0.128972I
4.68143 + 4.04785I 8.87355 7.54462I
u = 0.010703 + 1.336580I
a = 0.974927 + 0.360971I
b = 0.472031 + 1.306930I
3.38298 + 2.17320I 3.73471 5.95234I
u = 0.010703 1.336580I
a = 0.974927 0.360971I
b = 0.472031 1.306930I
3.38298 2.17320I 3.73471 + 5.95234I
26
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.083085 + 1.339270I
a = 0.858696 0.249299I
b = 0.405223 1.129310I
10.02040 + 6.88319I 2.75997 4.69096I
u = 0.083085 1.339270I
a = 0.858696 + 0.249299I
b = 0.405223 + 1.129310I
10.02040 6.88319I 2.75997 + 4.69096I
u = 0.088002 + 1.392780I
a = 0.943305 0.633826I
b = 0.79977 1.36959I
4.68143 4.04785I 8.87355 + 7.54462I
u = 0.088002 1.392780I
a = 0.943305 + 0.633826I
b = 0.79977 + 1.36959I
4.68143 + 4.04785I 8.87355 7.54462I
u = 0.23816 + 1.51409I
a = 0.369383 0.803694I
b = 1.128900 0.750687I
6.38960 5.97093I 2.44763 + 4.64423I
u = 0.23816 1.51409I
a = 0.369383 + 0.803694I
b = 1.128900 + 0.750687I
6.38960 + 5.97093I 2.44763 4.64423I
u = 0.33294 + 1.54797I
a = 0.183469 + 0.728798I
b = 1.067070 + 0.526649I
10.02040 6.88319I 2.75997 + 4.69096I
u = 0.33294 1.54797I
a = 0.183469 0.728798I
b = 1.067070 0.526649I
10.02040 + 6.88319I 2.75997 4.69096I
u = 0.135179 + 0.339713I
a = 2.39203 0.69379I
b = 0.087661 + 0.906387I
6.38960 5.97093I 2.44763 + 4.64423I
u = 0.135179 0.339713I
a = 2.39203 + 0.69379I
b = 0.087661 0.906387I
6.38960 + 5.97093I 2.44763 4.64423I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.254113 + 0.202182I
a = 1.51077 3.07819I
b = 0.238449 1.087660I
0.42163 2.68760I 3.09765 + 11.77435I
u = 0.254113 0.202182I
a = 1.51077 + 3.07819I
b = 0.238449 + 1.087660I
0.42163 + 2.68760I 3.09765 11.77435I
28
V. I
u
5
=
h−u
3
au +u
2
+b 2u+1, u
3
a+u
3
+a
2
+2au +2u+1, u
4
u
3
+3u
2
2u +1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
a
u
3
+ au u
2
+ 2u 1
a
7
=
1
u
2
a
12
=
u
3
a + u
2
a u
3
2au + u
2
+ a 3u + 1
1
a
2
=
u
3
au + u
2
+ a 2u + 1
u
3
+ au u
2
+ 2u 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
4
=
u
2
a u
3
au + u
2
+ a u + 1
u
2
a + 2u
3
+ au u
2
+ 3u 1
a
1
=
u
3
a + u
2
a u
3
2au u
2
+ a u
u
3
a u
2
a + au + 2u
2
u + 1
a
9
=
2au + a
u
3
+ au u
2
+ 2u 1
a
5
=
u
3
+ u
2
u
u
2
a + au a 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
8u
2
+ 24u 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
2
, c
5
, c
8
c
11
u
8
+ u
7
2u
6
4u
5
+ 9u
4
+ u
3
7u
2
+ u + 2
c
3
, c
9
u
8
7u
7
+ 30u
6
78u
5
+ 137u
4
163u
3
+ 131u
2
65u + 16
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
5
, c
8
c
11
y
8
5y
7
+ 30y
6
68y
5
+ 119y
4
127y
3
+ 83y
2
29y + 4
c
3
, c
9
y
8
+ 11y
7
+ 82y
6
+ 116y
5
+ 323y
4
+ 145y
3
+ 355y
2
33y + 256
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.570974 + 0.808855I
b = 0.987376 + 0.750545I
1.22292 2.83021I 2.34652 + 9.81749I
u = 0.395123 + 0.506844I
a = 0.02355 1.92973I
b = 0.635568 0.030203I
1.22292 2.83021I 2.34652 + 9.81749I
u = 0.395123 0.506844I
a = 0.570974 0.808855I
b = 0.987376 0.750545I
1.22292 + 2.83021I 2.34652 9.81749I
u = 0.395123 0.506844I
a = 0.02355 + 1.92973I
b = 0.635568 + 0.030203I
1.22292 + 2.83021I 2.34652 9.81749I
u = 0.10488 + 1.55249I
a = 0.729106 + 1.111840I
b = 0.797853 + 0.337246I
15.2264 6.3279I 9.65348 + 5.12960I
u = 0.10488 + 1.55249I
a = 0.181683 0.526191I
b = 1.64966 1.24854I
15.2264 6.3279I 9.65348 + 5.12960I
u = 0.10488 1.55249I
a = 0.729106 1.111840I
b = 0.797853 0.337246I
15.2264 + 6.3279I 9.65348 5.12960I
u = 0.10488 1.55249I
a = 0.181683 + 0.526191I
b = 1.64966 + 1.24854I
15.2264 + 6.3279I 9.65348 5.12960I
32
VI. I
u
6
= hu
3
u
2
+ b + 2u 1, u
3
+ a + 2u, u
4
u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
3
2u
u
3
+ u
2
2u + 1
a
7
=
1
u
2
a
12
=
1
0
a
2
=
u
2
1
u
3
+ u
2
2u + 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
4
=
u
u
3
u
a
1
=
1
u
2
a
9
=
u
3
+ 2u
u
3
u
2
+ 2u 1
a
5
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
8u
2
+ 24u 12
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
9
, c
12
u
4
u
3
+ 3u
2
2u + 1
c
2
, c
5
, c
8
c
11
u
4
u
3
+ u
2
+ 1
c
4
, c
10
u
4
+ u
3
+ 3u
2
+ 2u + 1
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
5
, c
8
c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.547424 1.120870I
b = 0.351808 0.720342I
0.42201 2.83021I 3.65348 + 9.81749I
u = 0.395123 0.506844I
a = 0.547424 + 1.120870I
b = 0.351808 + 0.720342I
0.42201 + 2.83021I 3.65348 9.81749I
u = 0.10488 + 1.55249I
a = 0.547424 + 0.585652I
b = 0.851808 + 0.911292I
13.5815 6.3279I 3.65348 + 5.12960I
u = 0.10488 1.55249I
a = 0.547424 0.585652I
b = 0.851808 0.911292I
13.5815 + 6.3279I 3.65348 5.12960I
36
VII. I
u
7
= h−au u
2
+ b + u 1, u
2
a + a
2
u
2
+ a 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
a
au + u
2
u + 1
a
7
=
1
u
2
a
12
=
u
2
a + au + u
2
a u + 1
1
a
2
=
au u
2
+ a + u 1
au + u
2
u + 1
a
10
=
u
u
2
u + 1
a
8
=
u
2
+ 1
u
2
u + 1
a
4
=
u
2
+ a 1
au
a
1
=
2au + a
u
2
a + au + u
2
u + 1
a
9
=
au + u
2
a + 1
au
a
5
=
2u
2
a + au + u
2
a + 1
au a u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 8u 14
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(u
3
+ u
2
+ 2u + 1)
2
c
2
, c
5
, c
8
c
11
u
6
u
5
2u
4
+ 2u
2
+ 2u 1
c
3
, c
9
(u + 1)
6
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
8
c
11
y
6
5y
5
+ 8y
4
6y
3
+ 8y
2
8y + 1
c
3
, c
9
(y 1)
6
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.103733 1.107850I
b = 0.592989 0.847544I
7.69319 5.65624I 1.01951 + 5.95889I
u = 0.215080 + 1.307140I
a = 0.558626 + 0.545571I
b = 1.47043 + 0.10268I
7.69319 5.65624I 1.01951 + 5.95889I
u = 0.215080 1.307140I
a = 0.103733 + 1.107850I
b = 0.592989 + 0.847544I
7.69319 + 5.65624I 1.01951 5.95889I
u = 0.215080 1.307140I
a = 0.558626 0.545571I
b = 1.47043 0.10268I
7.69319 + 5.65624I 1.01951 5.95889I
u = 0.569840
a = 0.665586
b = 1.13416
0.581975 12.0390
u = 0.569840
a = 1.99030
b = 0.379278
0.581975 12.0390
40
VIII. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
1
0
a
3
=
0
1
a
7
=
1
0
a
12
=
1
1
a
2
=
1
1
a
10
=
1
0
a
8
=
1
0
a
4
=
1
1
a
1
=
1
1
a
9
=
2
1
a
5
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
u
c
2
, c
3
, c
5
c
8
, c
9
, c
11
u 1
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
y
c
2
, c
3
, c
5
c
8
, c
9
, c
11
y 1
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
44
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
12
u(u
3
+ u
2
+ 2u + 1)
2
(u
4
u
3
+ ··· 2u + 1)(u
4
+ u
3
+ ··· + 2u + 1)
2
· (u
15
3u
14
+ ··· 6u + 3)(u
22
7u
21
+ ··· 8u + 1)
· ((u
24
+ 5u
23
+ ··· 4u + 1)
2
)(u
42
8u
41
+ ··· 40u + 5)
c
2
, c
5
, c
8
c
11
(u 1)(u
4
u
3
+ u
2
+ 1)(u
6
u
5
2u
4
+ 2u
2
+ 2u 1)
· (u
8
+ u
7
+ ··· + u + 2)(u
15
+ u
14
+ ··· 7u
2
+ 1)
· (u
22
+ u
21
+ ··· u + 1)(u
42
13u
40
+ ··· u + 1)
· (u
48
u
47
+ ··· + 36u + 61)
c
3
, c
9
(u 1)(u + 1)
6
(u
4
u
3
+ 3u
2
2u + 1)
· (u
8
7u
7
+ 30u
6
78u
5
+ 137u
4
163u
3
+ 131u
2
65u + 16)
· (u
11
+ 2u
9
+ 5u
7
+ 2u
6
+ 6u
5
+ 3u
4
+ 5u
3
+ 2u
2
+ u + 1)
2
· (u
15
6u
14
+ ··· 24u + 8)(u
21
+ 3u
20
+ ··· u 5)
2
· (u
24
+ u
23
+ ··· 44u + 8)
2
c
4
, c
10
u(u
3
+ u
2
+ 2u + 1)
2
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
3
· (u
15
3u
14
+ ··· 6u + 3)(u
22
+ 7u
21
+ ··· + 8u + 1)
· ((u
24
+ 5u
23
+ ··· 4u + 1)
2
)(u
42
8u
41
+ ··· 40u + 5)
45
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
7
, c
10
, c
12
y(y
3
+ 3y
2
+ 2y 1)
2
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
3
· (y
15
+ 17y
14
+ ··· + 6y 9)(y
22
+ 21y
21
+ ··· + 12y + 1)
· ((y
24
+ 23y
23
+ ··· 16y + 1)
2
)(y
42
+ 40y
41
+ ··· + 100y + 25)
c
2
, c
5
, c
8
c
11
(y 1)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
6
5y
5
+ ··· 8y + 1)
· (y
8
5y
7
+ 30y
6
68y
5
+ 119y
4
127y
3
+ 83y
2
29y + 4)
· (y
15
11y
14
+ ··· + 14y 1)(y
22
+ 7y
21
+ ··· 3y + 1)
· (y
42
26y
41
+ ··· 127y + 1)(y
48
+ 17y
47
+ ··· 19840y + 3721)
c
3
, c
9
(y 1)
7
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
8
+ 11y
7
+ 82y
6
+ 116y
5
+ 323y
4
+ 145y
3
+ 355y
2
33y + 256)
· ((y
11
+ 4y
10
+ ··· 3y 1)
2
)(y
15
6y
14
+ ··· + 224y 64)
· ((y
21
+ 9y
20
+ ··· 319y 25)
2
)(y
24
+ 9y
23
+ ··· 1040y + 64)
2
46