12a
0916
(K12a
0916
)
A knot diagram
1
Linearized knot diagam
4 6 9 10 2 11 12 3 1 5 7 8
Solving Sequence
7,11
12
3,8
9 4 1 6 2 5 10
c
11
c
7
c
8
c
3
c
12
c
6
c
2
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.91980 × 10
108
u
81
4.29606 × 10
108
u
80
+ ··· + 1.92612 × 10
108
b + 3.19210 × 10
108
,
5.04794 × 10
108
u
81
7.50428 × 10
108
u
80
+ ··· + 1.92612 × 10
108
a 1.67695 × 10
109
,
u
82
+ u
81
+ ··· + 10u 1i
I
u
2
= h−u
12
+ 8u
10
+ 2u
9
23u
8
10u
7
+ 27u
6
+ 13u
5
11u
4
u
3
+ 4u
2
+ b 1,
2u
13
+ u
12
+ 20u
11
5u
10
80u
9
+ u
8
+ 158u
7
+ 30u
6
150u
5
50u
4
+ 53u
3
+ 23u
2
+ a 4u 8,
u
14
10u
12
2u
11
+ 39u
10
+ 15u
9
73u
8
40u
7
+ 63u
6
+ 44u
5
17u
4
18u
3
2u
2
+ 4u + 1i
I
u
3
= hu
2
+ b, a 1, u
6
+ u
5
2u
4
2u
3
1i
I
u
4
= hb + 1, a 1, u 1i
I
u
5
= hb + a 1, a
2
a 1, u 1i
* 5 irreducible components of dim
C
= 0, with total 105 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.92 × 10
108
u
81
4.30 × 10
108
u
80
+ · · · + 1.93 × 10
108
b + 3.19 ×
10
108
, 5.05 × 10
108
u
81
7.50 × 10
108
u
80
+ · · · + 1.93 × 10
108
a 1.68 ×
10
109
, u
82
+ u
81
+ · · · + 10u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
2.62078u
81
+ 3.89606u
80
+ ··· 39.6810u + 8.70635
1.51590u
81
+ 2.23043u
80
+ ··· 9.19417u 1.65727
a
8
=
u
u
3
+ u
a
9
=
6.70590u
81
12.1721u
80
+ ··· + 90.0743u 10.7546
2.72204u
81
+ 5.57368u
80
+ ··· 61.2733u + 9.72272
a
4
=
6.65029u
81
+ 6.12344u
80
+ ··· 81.0522u + 16.1926
3.69683u
81
2.01061u
80
+ ··· + 53.9722u 8.26479
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
u
a
2
=
3.92048u
81
+ 5.03730u
80
+ ··· 55.4423u + 10.6962
0.216200u
81
+ 1.08919u
80
+ ··· + 6.56719u 3.64708
a
5
=
6.01645u
81
+ 9.73383u
80
+ ··· 69.8702u + 4.28812
2.02257u
81
2.95608u
80
+ ··· + 24.6648u 4.64477
a
10
=
7.90580u
81
13.4568u
80
+ ··· + 100.376u 9.65178
3.61742u
81
+ 6.47329u
80
+ ··· 70.8432u + 10.9055
(ii) Obstruction class = 1
(iii) Cusp Shapes = 36.4294u
81
+ 55.9906u
80
+ ··· 576.502u + 76.1479
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
82
3u
81
+ ··· + 15u 1
c
2
, c
5
u
82
+ u
81
+ ··· 138u + 33
c
3
, c
8
u
82
22u
80
+ ··· 4101u 607
c
4
, c
10
u
82
+ 5u
81
+ ··· + 112u 8
c
6
, c
7
, c
11
c
12
u
82
+ u
81
+ ··· + 10u 1
c
9
u
82
2u
81
+ ··· 24u + 12
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
82
13y
81
+ ··· 27y + 1
c
2
, c
5
y
82
39y
81
+ ··· 42804y + 1089
c
3
, c
8
y
82
44y
81
+ ··· 14225097y + 368449
c
4
, c
10
y
82
51y
81
+ ··· 13728y + 64
c
6
, c
7
, c
11
c
12
y
82
101y
81
+ ··· 110y + 1
c
9
y
82
8y
81
+ ··· 216y + 144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.984782 + 0.188624I
a = 0.141871 + 0.097301I
b = 0.334414 + 0.658720I
5.90211 2.33787I 0
u = 0.984782 0.188624I
a = 0.141871 0.097301I
b = 0.334414 0.658720I
5.90211 + 2.33787I 0
u = 0.843614 + 0.550628I
a = 0.787898 + 0.115680I
b = 0.1163850 0.0010731I
2.79780 0.42396I 0
u = 0.843614 0.550628I
a = 0.787898 0.115680I
b = 0.1163850 + 0.0010731I
2.79780 + 0.42396I 0
u = 1.02284
a = 1.47383
b = 0.331000
0.462297 0
u = 0.783113 + 0.549508I
a = 0.0588211 + 0.1268950I
b = 0.86879 1.12637I
4.73426 7.26403I 0
u = 0.783113 0.549508I
a = 0.0588211 0.1268950I
b = 0.86879 + 1.12637I
4.73426 + 7.26403I 0
u = 0.887115 + 0.337671I
a = 0.155583 0.193486I
b = 1.042270 0.535647I
3.35923 + 0.42248I 0
u = 0.887115 0.337671I
a = 0.155583 + 0.193486I
b = 1.042270 + 0.535647I
3.35923 0.42248I 0
u = 0.811426 + 0.677149I
a = 0.0288692 + 0.0472312I
b = 0.527577 + 1.199900I
0.39025 + 13.28170I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.811426 0.677149I
a = 0.0288692 0.0472312I
b = 0.527577 1.199900I
0.39025 13.28170I 0
u = 0.188934 + 0.907176I
a = 0.616856 + 0.715162I
b = 0.157446 + 0.338454I
2.29134 8.09229I 0
u = 0.188934 0.907176I
a = 0.616856 0.715162I
b = 0.157446 0.338454I
2.29134 + 8.09229I 0
u = 0.585370 + 0.706438I
a = 0.0863636 0.0965957I
b = 0.083043 1.114300I
2.00602 + 4.30322I 0
u = 0.585370 0.706438I
a = 0.0863636 + 0.0965957I
b = 0.083043 + 1.114300I
2.00602 4.30322I 0
u = 0.795599 + 0.407080I
a = 0.817039 + 0.266032I
b = 0.02769 1.43627I
3.45231 7.58300I 0
u = 0.795599 0.407080I
a = 0.817039 0.266032I
b = 0.02769 + 1.43627I
3.45231 + 7.58300I 0
u = 0.770296 + 0.366086I
a = 1.102450 0.449931I
b = 0.209050 0.713360I
2.67572 + 6.81110I 0
u = 0.770296 0.366086I
a = 1.102450 + 0.449931I
b = 0.209050 + 0.713360I
2.67572 6.81110I 0
u = 1.17627
a = 0.260420
b = 0.996259
3.39624 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.657045 + 0.470711I
a = 0.122567 + 0.464530I
b = 0.656971 + 1.206150I
2.18416 4.72064I 0
u = 0.657045 0.470711I
a = 0.122567 0.464530I
b = 0.656971 1.206150I
2.18416 + 4.72064I 0
u = 0.695887 + 0.178695I
a = 0.331121 1.049200I
b = 1.52202 + 1.38533I
0.296974 + 0.337709I 14.6453 + 19.7980I
u = 0.695887 0.178695I
a = 0.331121 + 1.049200I
b = 1.52202 1.38533I
0.296974 0.337709I 14.6453 19.7980I
u = 0.561252 + 0.447215I
a = 0.597055 0.069631I
b = 0.304635 + 0.996919I
0.76027 3.85816I 0. + 6.83350I
u = 0.561252 0.447215I
a = 0.597055 + 0.069631I
b = 0.304635 0.996919I
0.76027 + 3.85816I 0. 6.83350I
u = 0.126025 + 0.701569I
a = 0.59662 1.32241I
b = 0.114296 0.377897I
6.70258 + 3.06709I 5.21302 2.47341I
u = 0.126025 0.701569I
a = 0.59662 + 1.32241I
b = 0.114296 + 0.377897I
6.70258 3.06709I 5.21302 + 2.47341I
u = 0.236388 + 0.598256I
a = 0.294774 0.609135I
b = 0.426322 + 1.024910I
0.07658 4.13532I 0.75722 + 4.26107I
u = 0.236388 0.598256I
a = 0.294774 + 0.609135I
b = 0.426322 1.024910I
0.07658 + 4.13532I 0.75722 4.26107I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.28955 + 0.58878I
a = 0.0523594 + 0.0124131I
b = 0.706077 + 0.030045I
2.14333 + 2.89478I 0
u = 1.28955 0.58878I
a = 0.0523594 0.0124131I
b = 0.706077 0.030045I
2.14333 2.89478I 0
u = 0.113038 + 0.567992I
a = 0.569049 0.821467I
b = 0.095569 0.935559I
0.88681 + 4.41440I 3.03410 4.57971I
u = 0.113038 0.567992I
a = 0.569049 + 0.821467I
b = 0.095569 + 0.935559I
0.88681 4.41440I 3.03410 + 4.57971I
u = 0.558549 + 0.147764I
a = 0.621866 + 0.196056I
b = 0.456183 0.414679I
0.998059 + 0.188402I 10.40306 0.95041I
u = 0.558549 0.147764I
a = 0.621866 0.196056I
b = 0.456183 + 0.414679I
0.998059 0.188402I 10.40306 + 0.95041I
u = 0.234783 + 0.515407I
a = 1.32426 + 1.53813I
b = 0.365229 + 0.093260I
3.40619 + 1.28533I 2.46945 + 0.12060I
u = 0.234783 0.515407I
a = 1.32426 1.53813I
b = 0.365229 0.093260I
3.40619 1.28533I 2.46945 0.12060I
u = 0.502065 + 0.126289I
a = 2.39872 0.92369I
b = 0.61945 + 1.69002I
0.834967 + 0.544419I 9.5439 + 23.8545I
u = 0.502065 0.126289I
a = 2.39872 + 0.92369I
b = 0.61945 1.69002I
0.834967 0.544419I 9.5439 23.8545I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.284642 + 0.381065I
a = 1.48853 + 0.50264I
b = 0.008733 0.426456I
1.50630 + 0.84820I 1.82690 0.01242I
u = 0.284642 0.381065I
a = 1.48853 0.50264I
b = 0.008733 + 0.426456I
1.50630 0.84820I 1.82690 + 0.01242I
u = 1.52579 + 0.01939I
a = 0.08285 + 2.43592I
b = 0.54993 3.11467I
6.46065 4.82598I 0
u = 1.52579 0.01939I
a = 0.08285 2.43592I
b = 0.54993 + 3.11467I
6.46065 + 4.82598I 0
u = 1.52787 + 0.06405I
a = 0.02483 2.22735I
b = 0.25321 + 2.46288I
5.88122 + 5.76712I 0
u = 1.52787 0.06405I
a = 0.02483 + 2.22735I
b = 0.25321 2.46288I
5.88122 5.76712I 0
u = 1.54225 + 0.03034I
a = 0.49740 + 1.73264I
b = 1.12629 2.23338I
4.80677 0.09764I 0
u = 1.54225 0.03034I
a = 0.49740 1.73264I
b = 1.12629 + 2.23338I
4.80677 + 0.09764I 0
u = 0.438034
a = 4.33297
b = 0.243064
5.42434 13.3340
u = 1.55488 + 0.14908I
a = 0.15289 2.05569I
b = 0.07056 + 2.52598I
6.30459 + 6.05965I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55488 0.14908I
a = 0.15289 + 2.05569I
b = 0.07056 2.52598I
6.30459 6.05965I 0
u = 1.56931 + 0.07915I
a = 0.504205 + 1.215630I
b = 0.11412 1.46849I
8.22114 1.25008I 0
u = 1.56931 0.07915I
a = 0.504205 1.215630I
b = 0.11412 + 1.46849I
8.22114 + 1.25008I 0
u = 1.57829 + 0.02432I
a = 0.83255 2.02283I
b = 0.10047 + 2.25438I
6.44108 1.01444I 0
u = 1.57829 0.02432I
a = 0.83255 + 2.02283I
b = 0.10047 2.25438I
6.44108 + 1.01444I 0
u = 1.59304 + 0.13349I
a = 0.48960 2.30928I
b = 1.09569 + 3.07315I
5.44937 + 6.93869I 0
u = 1.59304 0.13349I
a = 0.48960 + 2.30928I
b = 1.09569 3.07315I
5.44937 6.93869I 0
u = 1.61613 + 0.05731I
a = 0.86864 2.17772I
b = 1.34031 + 2.38505I
7.71340 1.27145I 0
u = 1.61613 0.05731I
a = 0.86864 + 2.17772I
b = 1.34031 2.38505I
7.71340 + 1.27145I 0
u = 1.60197 + 0.23933I
a = 0.21626 + 1.64990I
b = 0.42879 2.17532I
9.34734 7.89119I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60197 0.23933I
a = 0.21626 1.64990I
b = 0.42879 + 2.17532I
9.34734 + 7.89119I 0
u = 1.62865 + 0.10885I
a = 0.27752 + 1.88885I
b = 0.60651 2.82092I
10.91440 8.63897I 0
u = 1.62865 0.10885I
a = 0.27752 1.88885I
b = 0.60651 + 2.82092I
10.91440 + 8.63897I 0
u = 1.63599 + 0.11853I
a = 0.13839 + 1.88321I
b = 0.63901 2.35405I
11.7947 + 9.5991I 0
u = 1.63599 0.11853I
a = 0.13839 1.88321I
b = 0.63901 + 2.35405I
11.7947 9.5991I 0
u = 1.63569 + 0.16394I
a = 0.60372 + 1.93511I
b = 1.25447 2.32571I
3.49190 + 9.98671I 0
u = 1.63569 0.16394I
a = 0.60372 1.93511I
b = 1.25447 + 2.32571I
3.49190 9.98671I 0
u = 1.64218 + 0.10635I
a = 1.02828 + 1.40183I
b = 1.70059 1.85899I
5.25941 2.18573I 0
u = 1.64218 0.10635I
a = 1.02828 1.40183I
b = 1.70059 + 1.85899I
5.25941 + 2.18573I 0
u = 1.64631 + 0.13035I
a = 0.166642 1.110980I
b = 0.64066 + 1.48754I
10.14690 + 2.43534I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.64631 0.13035I
a = 0.166642 + 1.110980I
b = 0.64066 1.48754I
10.14690 2.43534I 0
u = 1.64774 + 0.20688I
a = 0.28445 1.94616I
b = 1.02920 + 2.54457I
7.8970 16.6675I 0
u = 1.64774 0.20688I
a = 0.28445 + 1.94616I
b = 1.02920 2.54457I
7.8970 + 16.6675I 0
u = 1.65858 + 0.12298I
a = 0.110901 1.131240I
b = 0.41531 + 1.65555I
11.51240 2.00269I 0
u = 1.65858 0.12298I
a = 0.110901 + 1.131240I
b = 0.41531 1.65555I
11.51240 + 2.00269I 0
u = 1.68232 + 0.02867I
a = 0.34423 1.51184I
b = 0.47995 + 2.19462I
15.2504 + 3.0857I 0
u = 1.68232 0.02867I
a = 0.34423 + 1.51184I
b = 0.47995 2.19462I
15.2504 3.0857I 0
u = 0.232323 + 0.118937I
a = 2.05401 + 1.65947I
b = 0.558019 + 0.573483I
1.47682 0.41930I 7.12572 0.42040I
u = 0.232323 0.118937I
a = 2.05401 1.65947I
b = 0.558019 0.573483I
1.47682 + 0.41930I 7.12572 + 0.42040I
u = 0.139756 + 0.051773I
a = 5.40801 + 1.65564I
b = 0.39225 + 1.47645I
0.34771 4.65375I 6.29780 + 2.05720I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.139756 0.051773I
a = 5.40801 1.65564I
b = 0.39225 1.47645I
0.34771 + 4.65375I 6.29780 2.05720I
u = 1.88800
a = 0.440654
b = 0.742379
14.6724 0
13
II.
I
u
2
= h−u
12
+8u
10
+· · ·+b1, 2u
13
+u
12
+· · ·+a8, u
14
10u
12
+· · ·+4u+1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
2u
13
u
12
+ ··· + 4u + 8
u
12
8u
10
2u
9
+ 23u
8
+ 10u
7
27u
6
13u
5
+ 11u
4
+ u
3
4u
2
+ 1
a
8
=
u
u
3
+ u
a
9
=
3u
13
u
12
+ ··· + 6u + 11
u
12
u
11
+ ··· + u + 1
a
4
=
u
13
+ 11u
11
+ ··· + 19u
2
6
u
13
+ 9u
11
+ ··· + 4u
2
+ 2u
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
u
a
2
=
2u
13
20u
11
+ ··· + 2u + 8
u
7
+ 5u
5
+ 2u
4
7u
3
5u
2
+ 2u + 1
a
5
=
4u
13
+ 40u
11
+ ··· 2u 15
u
13
+ 9u
11
+ ··· + 7u
2
1
a
10
=
3u
13
2u
12
+ ··· + 7u + 13
u
3
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
13
+ 6u
12
+ 53u
11
42u
10
226u
9
+ 93u
8
+ 475u
7
51u
6
478u
5
45u
4
+ 177u
3
+ 40u
2
9u 18
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
5u
13
+ ··· + 8u 1
c
2
u
14
+ 6u
13
+ ··· + 6u + 1
c
3
u
14
3u
12
u
11
+ u
10
+ 2u
9
+ 4u
8
4u
6
u
5
u
4
+ u
3
+ 3u
2
1
c
4
u
14
3u
12
+ u
11
+ u
10
u
9
+ 4u
8
4u
6
+ 2u
5
u
4
u
3
+ 3u
2
1
c
5
u
14
6u
13
+ ··· 6u + 1
c
6
, c
7
u
14
10u
12
+ ··· 4u + 1
c
8
u
14
3u
12
+ u
11
+ u
10
2u
9
+ 4u
8
4u
6
+ u
5
u
4
u
3
+ 3u
2
1
c
9
u
14
3u
13
+ ··· + 9u + 5
c
10
u
14
3u
12
u
11
+ u
10
+ u
9
+ 4u
8
4u
6
2u
5
u
4
+ u
3
+ 3u
2
1
c
11
, c
12
u
14
10u
12
+ ··· + 4u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
7y
13
+ ··· 16y + 1
c
2
, c
5
y
14
14y
13
+ ··· 14y + 1
c
3
, c
8
y
14
6y
13
+ ··· 6y + 1
c
4
, c
10
y
14
6y
13
+ ··· 6y + 1
c
6
, c
7
, c
11
c
12
y
14
20y
13
+ ··· 20y + 1
c
9
y
14
9y
13
+ ··· 381y + 25
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.22387
a = 0.572038
b = 0.757485
2.53458 6.54520
u = 1.162790 + 0.439090I
a = 0.523471 0.653534I
b = 0.040336 + 0.575626I
2.80440 + 2.09868I 6.54061 1.90346I
u = 1.162790 0.439090I
a = 0.523471 + 0.653534I
b = 0.040336 0.575626I
2.80440 2.09868I 6.54061 + 1.90346I
u = 0.596998 + 0.186070I
a = 1.073280 + 0.589812I
b = 0.271776 1.277540I
0.545174 + 0.639000I 3.99401 + 1.44845I
u = 0.596998 0.186070I
a = 1.073280 0.589812I
b = 0.271776 + 1.277540I
0.545174 0.639000I 3.99401 1.44845I
u = 0.325168 + 0.425935I
a = 0.322223 + 0.016593I
b = 0.09995 + 1.63147I
0.08308 5.23699I 1.10474 + 13.13886I
u = 0.325168 0.425935I
a = 0.322223 0.016593I
b = 0.09995 1.63147I
0.08308 + 5.23699I 1.10474 13.13886I
u = 1.51899
a = 1.45349
b = 2.86372
0.601067 4.00870
u = 1.54617 + 0.13024I
a = 0.06551 2.57810I
b = 0.34874 + 3.21051I
6.64288 + 7.22347I 7.90690 8.98242I
u = 1.54617 0.13024I
a = 0.06551 + 2.57810I
b = 0.34874 3.21051I
6.64288 7.22347I 7.90690 + 8.98242I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.59813 + 0.06557I
a = 0.15257 + 1.71766I
b = 0.75191 2.00442I
7.12099 1.61991I 3.99923 0.01293I
u = 1.59813 0.06557I
a = 0.15257 1.71766I
b = 0.75191 + 2.00442I
7.12099 + 1.61991I 3.99923 + 0.01293I
u = 0.270493
a = 6.33895
b = 0.754277
5.70613 15.7570
u = 1.86121
a = 0.0876364
b = 0.109531
14.9057 23.1290
18
III. I
u
3
= hu
2
+ b, a 1, u
6
+ u
5
2u
4
2u
3
1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
9
=
0
u
a
4
=
1
0
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
u
a
2
=
u
4
+ u
2
+ 1
u
4
2u
2
a
5
=
u
5
2u
3
+ u 1
1
a
10
=
u
5
2u
3
+ u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ u
5
2u
3
+ 2u
2
4u + 1
c
2
, c
5
, c
9
u
6
5u
4
2u
3
+ 4u
2
3
c
3
, c
6
, c
7
c
8
, c
11
, c
12
u
6
+ u
5
2u
4
2u
3
1
c
4
, c
10
(u 1)
6
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
y
5
+ 8y
4
+ 6y
3
12y
2
12y + 1
c
2
, c
5
, c
9
y
6
10y
5
+ 33y
4
50y
3
+ 46y
2
24y + 9
c
3
, c
6
, c
7
c
8
, c
11
, c
12
y
6
5y
5
+ 8y
4
6y
3
+ 4y
2
+ 1
c
4
, c
10
(y 1)
6
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.819901 + 0.541369I
a = 1.00000
b = 0.379157 + 0.887737I
1.64493 6.00000
u = 0.819901 0.541369I
a = 1.00000
b = 0.379157 0.887737I
1.64493 6.00000
u = 0.373850 + 0.559427I
a = 1.00000
b = 0.173195 0.418284I
1.64493 6.00000
u = 0.373850 0.559427I
a = 1.00000
b = 0.173195 + 0.418284I
1.64493 6.00000
u = 1.45970
a = 1.00000
b = 2.13072
1.64493 6.00000
u = 1.56760
a = 1.00000
b = 2.45736
1.64493 6.00000
22
IV. I
u
4
= hb + 1, a 1, u 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
1
a
8
=
1
0
a
9
=
0
1
a
4
=
1
0
a
1
=
0
1
a
6
=
1
1
a
2
=
1
1
a
5
=
1
1
a
10
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u + 1
c
2
, c
5
, c
9
u
c
3
, c
4
, c
6
c
7
, c
8
, c
10
c
11
, c
12
u 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y 1
c
2
, c
5
, c
9
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
26
V. I
u
5
= hb + a 1, a
2
a 1, u 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
a
a + 1
a
8
=
1
0
a
9
=
0
a + 2
a
4
=
a
a 2
a
1
=
0
1
a
6
=
1
1
a
2
=
a + 1
a
a
5
=
a
a + 1
a
10
=
0
a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
u
2
u 1
c
2
, c
11
, c
12
(u 1)
2
c
3
, c
4
u
2
+ u 1
c
5
, c
6
, c
7
(u + 1)
2
c
9
u
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
y
2
3y + 1
c
2
, c
5
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
9
y
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 1.61803
0 5.00000
u = 1.00000
a = 1.61803
b = 0.618034
0 5.00000
30
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
2
u 1)(u
6
+ u
5
+ ··· 4u + 1)(u
14
5u
13
+ ··· + 8u 1)
· (u
82
3u
81
+ ··· + 15u 1)
c
2
u(u 1)
2
(u
6
5u
4
+ ··· + 4u
2
3)(u
14
+ 6u
13
+ ··· + 6u + 1)
· (u
82
+ u
81
+ ··· 138u + 33)
c
3
(u 1)(u
2
+ u 1)(u
6
+ u
5
2u
4
2u
3
1)
· (u
14
3u
12
u
11
+ u
10
+ 2u
9
+ 4u
8
4u
6
u
5
u
4
+ u
3
+ 3u
2
1)
· (u
82
22u
80
+ ··· 4101u 607)
c
4
(u 1)
7
(u
2
+ u 1)
· (u
14
3u
12
+ u
11
+ u
10
u
9
+ 4u
8
4u
6
+ 2u
5
u
4
u
3
+ 3u
2
1)
· (u
82
+ 5u
81
+ ··· + 112u 8)
c
5
u(u + 1)
2
(u
6
5u
4
+ ··· + 4u
2
3)(u
14
6u
13
+ ··· 6u + 1)
· (u
82
+ u
81
+ ··· 138u + 33)
c
6
, c
7
(u 1)(u + 1)
2
(u
6
+ u
5
+ ··· 2u
3
1)(u
14
10u
12
+ ··· 4u + 1)
· (u
82
+ u
81
+ ··· + 10u 1)
c
8
(u 1)(u
2
u 1)(u
6
+ u
5
2u
4
2u
3
1)
· (u
14
3u
12
+ u
11
+ u
10
2u
9
+ 4u
8
4u
6
+ u
5
u
4
u
3
+ 3u
2
1)
· (u
82
22u
80
+ ··· 4101u 607)
c
9
u
3
(u
6
5u
4
+ ··· + 4u
2
3)(u
14
3u
13
+ ··· + 9u + 5)
· (u
82
2u
81
+ ··· 24u + 12)
c
10
(u 1)
7
(u
2
u 1)
· (u
14
3u
12
u
11
+ u
10
+ u
9
+ 4u
8
4u
6
2u
5
u
4
+ u
3
+ 3u
2
1)
· (u
82
+ 5u
81
+ ··· + 112u 8)
c
11
, c
12
((u 1)
3
)(u
6
+ u
5
2u
4
2u
3
1)(u
14
10u
12
+ ··· + 4u + 1)
· (u
82
+ u
81
+ ··· + 10u 1)
31
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
2
3y + 1)(y
6
y
5
+ 8y
4
+ 6y
3
12y
2
12y + 1)
· (y
14
7y
13
+ ··· 16y + 1)(y
82
13y
81
+ ··· 27y + 1)
c
2
, c
5
y(y 1)
2
(y
6
10y
5
+ 33y
4
50y
3
+ 46y
2
24y + 9)
· (y
14
14y
13
+ ··· 14y + 1)(y
82
39y
81
+ ··· 42804y + 1089)
c
3
, c
8
(y 1)(y
2
3y + 1)(y
6
5y
5
+ 8y
4
6y
3
+ 4y
2
+ 1)
· (y
14
6y
13
+ ··· 6y + 1)(y
82
44y
81
+ ··· 1.42251 × 10
7
y + 368449)
c
4
, c
10
((y 1)
7
)(y
2
3y + 1)(y
14
6y
13
+ ··· 6y + 1)
· (y
82
51y
81
+ ··· 13728y + 64)
c
6
, c
7
, c
11
c
12
((y 1)
3
)(y
6
5y
5
+ ··· + 4y
2
+ 1)(y
14
20y
13
+ ··· 20y + 1)
· (y
82
101y
81
+ ··· 110y + 1)
c
9
y
3
(y
6
10y
5
+ 33y
4
50y
3
+ 46y
2
24y + 9)
· (y
14
9y
13
+ ··· 381y + 25)(y
82
8y
81
+ ··· 216y + 144)
32