10
87
(K10a
39
)
A knot diagram
1
Linearized knot diagam
6 7 1 8 4 10 9 5 2 3
Solving Sequence
4,8
5 6
1,9
3 7 2 10
c
4
c
5
c
8
c
3
c
7
c
2
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2225248116121u
40
2393989479567u
39
+ ··· + 10297376929134b 6012630756121,
31071718506119u
40
+ 39367206545589u
39
+ ··· + 5148688464567a 44602733573152,
u
41
2u
40
+ ··· u 1i
I
u
2
= hb 1, a 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.23×10
12
u
40
2.39×10
12
u
39
+· · ·+1.03×10
13
b6.01×10
12
, 3.11×
10
13
u
40
+3.94×10
13
u
39
+· · ·+5.15×10
12
a4.46×10
13
, u
41
2u
40
+· · ·u1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
6
=
u
2
+ 1
u
2
a
1
=
6.03488u
40
7.64606u
39
+ ··· + 20.1260u + 8.66293
0.216099u
40
+ 0.232485u
39
+ ··· 1.20415u + 0.583899
a
9
=
u
u
3
+ u
a
3
=
5.64438u
40
7.18325u
39
+ ··· + 18.2918u + 8.93217
0.135606u
40
+ 0.0700585u
39
+ ··· 1.18339u + 0.664403
a
7
=
u
3
u
5
u
3
+ u
a
2
=
4.44062u
40
5.31684u
39
+ ··· + 13.7767u + 7.07457
1.46774u
40
+ 1.54335u
39
+ ··· 6.10178u 1.46782
a
10
=
1.00290u
40
1.84189u
39
+ ··· + 5.12751u + 1.12239
0.839015u
40
+ 1.67515u
39
+ ··· 0.958478u 0.838993
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
23238917313784
1716229488189
u
40
10481023528134
572076496063
u
39
+ ··· +
28692506559598
572076496063
u +
39302820789020
1716229488189
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 8u
39
+ ··· + 687u + 229
c
2
u
41
+ 2u
40
+ ··· 97u + 29
c
3
, c
10
u
41
+ 2u
40
+ ··· + 9u + 1
c
4
, c
8
u
41
+ 2u
40
+ ··· u + 1
c
5
, c
7
u
41
+ 12u
40
+ ··· + 5u + 1
c
6
u
41
+ 4u
40
+ ··· + u + 1
c
9
u
41
7u
40
+ ··· + 6u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
+ 16y
40
+ ··· + 1271637y 52441
c
2
y
41
+ 48y
40
+ ··· 7063y 841
c
3
, c
10
y
41
32y
40
+ ··· + 141y 1
c
4
, c
8
y
41
12y
40
+ ··· + 5y 1
c
5
, c
7
y
41
+ 36y
40
+ ··· + 5y 1
c
6
y
41
8y
40
+ ··· + 5y 1
c
9
y
41
+ 9y
40
+ ··· 16y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.903206 + 0.396002I
a = 1.211920 + 0.667053I
b = 0.408078 + 0.420450I
1.94008 1.34771I 7.61480 + 3.42502I
u = 0.903206 0.396002I
a = 1.211920 0.667053I
b = 0.408078 0.420450I
1.94008 + 1.34771I 7.61480 3.42502I
u = 0.952455 + 0.222261I
a = 0.211328 + 0.932061I
b = 0.096162 + 0.914015I
2.78156 + 3.84619I 6.97849 6.75687I
u = 0.952455 0.222261I
a = 0.211328 0.932061I
b = 0.096162 0.914015I
2.78156 3.84619I 6.97849 + 6.75687I
u = 0.821825 + 0.760247I
a = 0.450451 0.306050I
b = 0.335334 0.324976I
3.49362 + 1.78935I 0.87448 4.34492I
u = 0.821825 0.760247I
a = 0.450451 + 0.306050I
b = 0.335334 + 0.324976I
3.49362 1.78935I 0.87448 + 4.34492I
u = 0.866850
a = 0.639506
b = 0.0835204
1.43130 6.87200
u = 0.798878 + 0.810698I
a = 0.377223 0.719870I
b = 0.265202 + 1.192170I
3.76974 + 2.25598I 1.50138 3.41744I
u = 0.798878 0.810698I
a = 0.377223 + 0.719870I
b = 0.265202 1.192170I
3.76974 2.25598I 1.50138 + 3.41744I
u = 1.102330 + 0.334587I
a = 0.338270 1.284530I
b = 1.253450 0.430907I
0.85372 + 8.63849I 1.84811 8.19635I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.102330 0.334587I
a = 0.338270 + 1.284530I
b = 1.253450 + 0.430907I
0.85372 8.63849I 1.84811 + 8.19635I
u = 0.058442 + 0.843545I
a = 1.57943 0.15589I
b = 1.284700 + 0.271028I
4.36449 4.62926I 4.68493 + 4.91932I
u = 0.058442 0.843545I
a = 1.57943 + 0.15589I
b = 1.284700 0.271028I
4.36449 + 4.62926I 4.68493 4.91932I
u = 0.883648 + 0.770325I
a = 3.62989 + 1.11022I
b = 1.134150 + 0.025263I
5.18095 + 2.90757I 15.8800 + 0.I
u = 0.883648 0.770325I
a = 3.62989 1.11022I
b = 1.134150 0.025263I
5.18095 2.90757I 15.8800 + 0.I
u = 0.760286 + 0.907829I
a = 1.73221 + 0.34788I
b = 1.45266 0.46932I
9.17940 + 7.97252I 3.27060 3.71618I
u = 0.760286 0.907829I
a = 1.73221 0.34788I
b = 1.45266 + 0.46932I
9.17940 7.97252I 3.27060 + 3.71618I
u = 0.866672 + 0.809557I
a = 1.56395 1.02120I
b = 1.60494 + 0.57469I
7.77351 0.87153I 6.95024 0.30904I
u = 0.866672 0.809557I
a = 1.56395 + 1.02120I
b = 1.60494 0.57469I
7.77351 + 0.87153I 6.95024 + 0.30904I
u = 0.929908 + 0.739442I
a = 0.037024 + 0.508793I
b = 0.197100 + 0.379729I
3.15987 + 3.90045I 0.31532 1.57295I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.929908 0.739442I
a = 0.037024 0.508793I
b = 0.197100 0.379729I
3.15987 3.90045I 0.31532 + 1.57295I
u = 0.744475 + 0.942248I
a = 1.62214 0.18187I
b = 1.310630 + 0.070763I
8.52020 + 0.56768I 6.81847 0.32338I
u = 0.744475 0.942248I
a = 1.62214 + 0.18187I
b = 1.310630 0.070763I
8.52020 0.56768I 6.81847 + 0.32338I
u = 0.739440 + 0.286658I
a = 0.11659 + 1.68574I
b = 1.073000 + 0.545709I
1.56831 + 2.54987I 1.57226 7.77175I
u = 0.739440 0.286658I
a = 0.11659 1.68574I
b = 1.073000 0.545709I
1.56831 2.54987I 1.57226 + 7.77175I
u = 0.913744 + 0.795988I
a = 2.19807 1.07996I
b = 1.55855 0.65970I
7.62795 5.14257I 6.43416 + 5.95767I
u = 0.913744 0.795988I
a = 2.19807 + 1.07996I
b = 1.55855 + 0.65970I
7.62795 + 5.14257I 6.43416 5.95767I
u = 1.191150 + 0.227807I
a = 0.076211 + 0.412771I
b = 1.116560 0.153454I
0.067811 + 0.953358I 2.02910 7.42558I
u = 1.191150 0.227807I
a = 0.076211 0.412771I
b = 1.116560 + 0.153454I
0.067811 0.953358I 2.02910 + 7.42558I
u = 0.960612 + 0.767884I
a = 1.113770 + 0.253317I
b = 0.163245 1.244780I
3.27367 8.18385I 0. + 8.35233I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.960612 0.767884I
a = 1.113770 0.253317I
b = 0.163245 + 1.244780I
3.27367 + 8.18385I 0. 8.35233I
u = 0.748657 + 0.093307I
a = 0.47886 4.75552I
b = 0.938830 0.044980I
0.431185 0.284475I 13.1815 15.1990I
u = 0.748657 0.093307I
a = 0.47886 + 4.75552I
b = 0.938830 + 0.044980I
0.431185 + 0.284475I 13.1815 + 15.1990I
u = 1.022750 + 0.797628I
a = 1.90383 + 1.42431I
b = 1.44670 + 0.51890I
8.3544 14.2736I 0. + 8.33140I
u = 1.022750 0.797628I
a = 1.90383 1.42431I
b = 1.44670 0.51890I
8.3544 + 14.2736I 0. 8.33140I
u = 1.045230 + 0.812235I
a = 1.41367 1.18781I
b = 1.277530 0.155370I
7.57848 + 5.87702I 0. 5.65225I
u = 1.045230 0.812235I
a = 1.41367 + 1.18781I
b = 1.277530 + 0.155370I
7.57848 5.87702I 0. + 5.65225I
u = 0.039502 + 0.458105I
a = 0.880104 + 0.384951I
b = 0.142705 0.550416I
0.05414 1.50218I 0.18723 + 4.24532I
u = 0.039502 0.458105I
a = 0.880104 0.384951I
b = 0.142705 + 0.550416I
0.05414 + 1.50218I 0.18723 4.24532I
u = 0.361128 + 0.264161I
a = 0.168271 + 0.663616I
b = 1.275180 0.127224I
2.56290 0.10225I 4.38337 2.22967I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.361128 0.264161I
a = 0.168271 0.663616I
b = 1.275180 + 0.127224I
2.56290 + 0.10225I 4.38337 + 2.22967I
9
II. I
u
2
= hb 1, a 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
6
=
0
1
a
1
=
1
1
a
9
=
1
0
a
3
=
2
1
a
7
=
1
1
a
2
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
u 1
c
5
, c
8
, c
10
u + 1
c
9
u
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
y 1
c
9
y
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
41
+ 8u
39
+ ··· + 687u + 229)
c
2
(u 1)(u
41
+ 2u
40
+ ··· 97u + 29)
c
3
(u 1)(u
41
+ 2u
40
+ ··· + 9u + 1)
c
4
(u 1)(u
41
+ 2u
40
+ ··· u + 1)
c
5
(u + 1)(u
41
+ 12u
40
+ ··· + 5u + 1)
c
6
(u 1)(u
41
+ 4u
40
+ ··· + u + 1)
c
7
(u 1)(u
41
+ 12u
40
+ ··· + 5u + 1)
c
8
(u + 1)(u
41
+ 2u
40
+ ··· u + 1)
c
9
u(u
41
7u
40
+ ··· + 6u 2)
c
10
(u + 1)(u
41
+ 2u
40
+ ··· + 9u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
41
+ 16y
40
+ ··· + 1271637y 52441)
c
2
(y 1)(y
41
+ 48y
40
+ ··· 7063y 841)
c
3
, c
10
(y 1)(y
41
32y
40
+ ··· + 141y 1)
c
4
, c
8
(y 1)(y
41
12y
40
+ ··· + 5y 1)
c
5
, c
7
(y 1)(y
41
+ 36y
40
+ ··· + 5y 1)
c
6
(y 1)(y
41
8y
40
+ ··· + 5y 1)
c
9
y(y
41
+ 9y
40
+ ··· 16y 4)
15