12a
0921
(K12a
0921
)
A knot diagram
1
Linearized knot diagam
4 6 9 10 11 3 12 1 2 5 8 7
Solving Sequence
4,10
5 11
2,6
1 9 3 7 8 12
c
4
c
10
c
5
c
1
c
9
c
3
c
6
c
8
c
12
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.48478 × 10
151
u
92
+ 2.29231 × 10
151
u
91
+ ··· + 4.90569 × 10
151
b 2.80006 × 10
152
,
2.01917 × 10
152
u
92
3.99607 × 10
151
u
91
+ ··· + 9.81138 × 10
151
a + 9.96934 × 10
152
, u
93
+ u
92
+ ··· 18u + 4i
I
u
2
= hu
20
9u
18
+ ··· 2u
2
+ b, u
19
+ 10u
17
+ ··· + a + 3, u
21
11u
19
+ ··· 6u
2
+ 1i
I
u
3
= h−u
2
+ b, a 1, u
15
3u
13
+ u
10
+ 5u
9
2u
8
u
6
3u
5
+ 2u
4
u
3
+ u
2
1i
* 3 irreducible components of dim
C
= 0, with total 129 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.48 × 10
151
u
92
+ 2.29 × 10
151
u
91
+ · · · + 4.91 × 10
151
b 2.80 ×
10
152
, 2.02 × 10
152
u
92
4.00 × 10
151
u
91
+ · · · + 9.81 × 10
151
a + 9.97 ×
10
152
, u
93
+ u
92
+ · · · 18u + 4i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
2
=
2.05799u
92
+ 0.407289u
91
+ ··· + 12.6723u 10.1610
1.93342u
92
0.467276u
91
+ ··· 30.7332u + 5.70778
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
0.124563u
92
0.0599871u
91
+ ··· 18.0609u 4.45321
1.93342u
92
0.467276u
91
+ ··· 30.7332u + 5.70778
a
9
=
0.799139u
92
0.728059u
91
+ ··· 46.3661u + 4.77657
1.44094u
92
0.629335u
91
+ ··· 29.6189u + 5.05852
a
3
=
1.94848u
92
+ 0.489593u
91
+ ··· + 11.8488u 10.0698
1.92816u
92
0.456854u
91
+ ··· 30.4428u + 5.56450
a
7
=
1.25578u
92
0.230053u
91
+ ··· 14.2454u 1.89595
1.36128u
92
+ 0.166064u
91
+ ··· + 17.7972u 4.51459
a
8
=
1.51946u
92
+ 0.0968024u
91
+ ··· + 24.1105u 2.93910
2.91059u
92
+ 0.633840u
91
+ ··· + 41.0680u 8.34160
a
12
=
0.632413u
92
0.385835u
91
+ ··· 27.7370u + 0.504505
0.480647u
92
+ 0.112108u
91
+ ··· 0.601988u + 0.0953933
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.79061u
92
+ 1.91185u
91
+ ··· + 111.874u 20.5189
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
93
7u
92
+ ··· + 87046u 14548
c
2
, c
6
u
93
4u
92
+ ··· + 818u + 292
c
3
u
93
u
92
+ ··· + 82u 4
c
4
, c
5
, c
10
u
93
+ u
92
+ ··· 18u + 4
c
7
, c
11
, c
12
u
93
5u
92
+ ··· 62u + 4
c
8
u
93
+ 5u
92
+ ··· 263654u + 40564
c
9
u
93
+ 3u
92
+ ··· 3506u 1364
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
93
19y
92
+ ··· + 9425154940y 211644304
c
2
, c
6
y
93
48y
92
+ ··· + 1643820y 85264
c
3
y
93
9y
92
+ ··· + 3164y 16
c
4
, c
5
, c
10
y
93
101y
92
+ ··· 468y 16
c
7
, c
11
, c
12
y
93
+ 81y
92
+ ··· + 588y 16
c
8
y
93
27y
92
+ ··· + 67097196492y 1645438096
c
9
y
93
+ 21y
92
+ ··· 67270084y 1860496
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.508441 + 0.865954I
a = 0.325096 + 1.247810I
b = 1.041020 0.783812I
0.20096 + 8.92280I 0
u = 0.508441 0.865954I
a = 0.325096 1.247810I
b = 1.041020 + 0.783812I
0.20096 8.92280I 0
u = 0.469257 + 0.915218I
a = 0.423152 1.219970I
b = 1.082360 + 0.876290I
5.41996 12.97790I 0
u = 0.469257 0.915218I
a = 0.423152 + 1.219970I
b = 1.082360 0.876290I
5.41996 + 12.97790I 0
u = 0.927529 + 0.448886I
a = 1.058270 + 0.051455I
b = 0.397945 + 0.501367I
8.09310 + 0.14930I 0
u = 0.927529 0.448886I
a = 1.058270 0.051455I
b = 0.397945 0.501367I
8.09310 0.14930I 0
u = 0.530707 + 0.896493I
a = 0.490200 + 0.098599I
b = 0.718569 0.370152I
2.47227 0.63691I 0
u = 0.530707 0.896493I
a = 0.490200 0.098599I
b = 0.718569 + 0.370152I
2.47227 + 0.63691I 0
u = 0.534102 + 0.752303I
a = 0.142930 1.371140I
b = 0.918907 + 0.670898I
2.25254 4.57716I 0
u = 0.534102 0.752303I
a = 0.142930 + 1.371140I
b = 0.918907 0.670898I
2.25254 + 4.57716I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.735519 + 0.867109I
a = 0.628196 + 0.018969I
b = 0.763287 + 0.500011I
0.33868 3.16041I 0
u = 0.735519 0.867109I
a = 0.628196 0.018969I
b = 0.763287 0.500011I
0.33868 + 3.16041I 0
u = 0.556116 + 0.577176I
a = 0.178244 1.271710I
b = 1.08666 + 0.99348I
2.06421 + 7.25817I 0
u = 0.556116 0.577176I
a = 0.178244 + 1.271710I
b = 1.08666 0.99348I
2.06421 7.25817I 0
u = 0.837532 + 0.861025I
a = 0.678478 0.091597I
b = 0.777681 0.589874I
4.46674 + 7.02318I 0
u = 0.837532 0.861025I
a = 0.678478 + 0.091597I
b = 0.777681 + 0.589874I
4.46674 7.02318I 0
u = 0.625041 + 0.460913I
a = 0.66228 1.43861I
b = 0.745720 + 0.381896I
1.99795 3.83741I 0
u = 0.625041 0.460913I
a = 0.66228 + 1.43861I
b = 0.745720 0.381896I
1.99795 + 3.83741I 0
u = 0.301204 + 0.688922I
a = 0.56454 + 1.82402I
b = 0.624251 0.868525I
9.88119 + 3.92848I 0
u = 0.301204 0.688922I
a = 0.56454 1.82402I
b = 0.624251 + 0.868525I
9.88119 3.92848I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.723386
a = 1.60032
b = 0.704568
0.943143 10.4180
u = 1.281680 + 0.000599I
a = 0.204360 + 1.175340I
b = 0.788781 1.123720I
1.54277 5.13635I 0
u = 1.281680 0.000599I
a = 0.204360 1.175340I
b = 0.788781 + 1.123720I
1.54277 + 5.13635I 0
u = 0.538824 + 0.470683I
a = 0.160205 + 1.374300I
b = 1.080240 0.790479I
2.76079 3.81720I 9.13434 + 6.95796I
u = 0.538824 0.470683I
a = 0.160205 1.374300I
b = 1.080240 + 0.790479I
2.76079 + 3.81720I 9.13434 6.95796I
u = 0.260333 + 0.634297I
a = 0.292242 + 1.114540I
b = 0.257972 1.062420I
4.35474 0.70676I 1.78969 + 4.36362I
u = 0.260333 0.634297I
a = 0.292242 1.114540I
b = 0.257972 + 1.062420I
4.35474 + 0.70676I 1.78969 4.36362I
u = 1.316730 + 0.162695I
a = 0.170965 0.295963I
b = 0.30737 + 2.10149I
2.22557 + 8.18081I 0
u = 1.316730 0.162695I
a = 0.170965 + 0.295963I
b = 0.30737 2.10149I
2.22557 8.18081I 0
u = 1.326910 + 0.070082I
a = 0.001160 + 0.218282I
b = 1.26981 1.26624I
3.28953 + 0.55896I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.326910 0.070082I
a = 0.001160 0.218282I
b = 1.26981 + 1.26624I
3.28953 0.55896I 0
u = 1.281140 + 0.367616I
a = 0.069228 0.910131I
b = 1.28880 + 0.64130I
0.63612 + 2.02419I 0
u = 1.281140 0.367616I
a = 0.069228 + 0.910131I
b = 1.28880 0.64130I
0.63612 2.02419I 0
u = 1.353450 + 0.161844I
a = 0.132542 + 0.363700I
b = 0.17474 1.64951I
3.22563 5.08058I 0
u = 1.353450 0.161844I
a = 0.132542 0.363700I
b = 0.17474 + 1.64951I
3.22563 + 5.08058I 0
u = 0.407933 + 0.464047I
a = 0.866007 + 0.691674I
b = 0.688589 0.455821I
2.66989 + 0.13790I 2.92063 0.32720I
u = 0.407933 0.464047I
a = 0.866007 0.691674I
b = 0.688589 + 0.455821I
2.66989 0.13790I 2.92063 + 0.32720I
u = 1.381120 + 0.098816I
a = 0.006521 0.340348I
b = 0.636543 + 1.106670I
2.64960 + 1.68388I 0
u = 1.381120 0.098816I
a = 0.006521 + 0.340348I
b = 0.636543 1.106670I
2.64960 1.68388I 0
u = 1.360210 + 0.260057I
a = 0.162811 + 0.802512I
b = 1.021440 0.796484I
4.89754 3.66913I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.360210 0.260057I
a = 0.162811 0.802512I
b = 1.021440 + 0.796484I
4.89754 + 3.66913I 0
u = 1.389140 + 0.012717I
a = 0.554931 + 1.201120I
b = 0.847473 0.644385I
5.08356 2.17532I 0
u = 1.389140 0.012717I
a = 0.554931 1.201120I
b = 0.847473 + 0.644385I
5.08356 + 2.17532I 0
u = 1.406690 + 0.094426I
a = 1.29452 1.03273I
b = 0.598145 0.021332I
0.18126 7.44744I 0
u = 1.406690 0.094426I
a = 1.29452 + 1.03273I
b = 0.598145 + 0.021332I
0.18126 + 7.44744I 0
u = 1.39601 + 0.23784I
a = 0.329690 0.575972I
b = 0.98291 + 1.39370I
0.90850 + 3.86973I 0
u = 1.39601 0.23784I
a = 0.329690 + 0.575972I
b = 0.98291 1.39370I
0.90850 3.86973I 0
u = 1.41760 + 0.04823I
a = 0.99595 + 1.26314I
b = 0.693903 0.244095I
6.04675 + 2.86647I 0
u = 1.41760 0.04823I
a = 0.99595 1.26314I
b = 0.693903 + 0.244095I
6.04675 2.86647I 0
u = 0.135731 + 0.564632I
a = 0.038430 1.246730I
b = 0.596702 + 1.029200I
1.44493 + 2.51937I 0.01028 7.23544I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.135731 0.564632I
a = 0.038430 + 1.246730I
b = 0.596702 1.029200I
1.44493 2.51937I 0.01028 + 7.23544I
u = 0.047256 + 0.569881I
a = 0.11875 + 1.41024I
b = 0.79856 1.28376I
6.45729 5.60603I 5.38089 + 6.61393I
u = 0.047256 0.569881I
a = 0.11875 1.41024I
b = 0.79856 + 1.28376I
6.45729 + 5.60603I 5.38089 6.61393I
u = 1.43982 + 0.23261I
a = 0.553535 1.141840I
b = 0.815368 + 1.022160I
4.25414 7.21931I 0
u = 1.43982 0.23261I
a = 0.553535 + 1.141840I
b = 0.815368 1.022160I
4.25414 + 7.21931I 0
u = 0.467586 + 0.257946I
a = 0.02407 1.81471I
b = 1.094560 + 0.380639I
0.223024 + 0.638682I 7.26593 1.08990I
u = 0.467586 0.257946I
a = 0.02407 + 1.81471I
b = 1.094560 0.380639I
0.223024 0.638682I 7.26593 + 1.08990I
u = 1.48280 + 0.12522I
a = 0.584483 + 0.824508I
b = 1.39781 0.71566I
6.64297 2.24828I 0
u = 1.48280 0.12522I
a = 0.584483 0.824508I
b = 1.39781 + 0.71566I
6.64297 + 2.24828I 0
u = 1.49936 + 0.17405I
a = 0.571538 0.743869I
b = 1.53989 + 0.86367I
9.39431 + 6.26075I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49936 0.17405I
a = 0.571538 + 0.743869I
b = 1.53989 0.86367I
9.39431 6.26075I 0
u = 1.50553 + 0.20623I
a = 0.567957 + 0.697438I
b = 1.62262 0.98031I
4.61612 10.16490I 0
u = 1.50553 0.20623I
a = 0.567957 0.697438I
b = 1.62262 + 0.98031I
4.61612 + 10.16490I 0
u = 1.48132 + 0.41379I
a = 0.044885 + 0.816597I
b = 1.072630 0.146328I
2.25116 8.01558I 0
u = 1.48132 0.41379I
a = 0.044885 0.816597I
b = 1.072630 + 0.146328I
2.25116 + 8.01558I 0
u = 1.49735 + 0.35692I
a = 0.039185 0.774715I
b = 0.871253 + 0.182705I
6.70226 + 4.67739I 0
u = 1.49735 0.35692I
a = 0.039185 + 0.774715I
b = 0.871253 0.182705I
6.70226 4.67739I 0
u = 1.53475 + 0.12089I
a = 1.024310 + 0.928571I
b = 0.722740 0.376986I
5.12025 + 5.82093I 0
u = 1.53475 0.12089I
a = 1.024310 0.928571I
b = 0.722740 + 0.376986I
5.12025 5.82093I 0
u = 1.52693 + 0.26895I
a = 0.586700 + 0.990447I
b = 1.170260 0.787437I
4.44470 + 8.33731I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52693 0.26895I
a = 0.586700 0.990447I
b = 1.170260 + 0.787437I
4.44470 8.33731I 0
u = 0.235303 + 0.381265I
a = 0.96159 1.43797I
b = 0.610180 + 0.360523I
0.375586 + 1.110620I 5.85320 5.23683I
u = 0.235303 0.381265I
a = 0.96159 + 1.43797I
b = 0.610180 0.360523I
0.375586 1.110620I 5.85320 + 5.23683I
u = 1.52414 + 0.33387I
a = 0.521304 + 0.976377I
b = 1.39892 0.94174I
1.0116 + 17.5021I 0
u = 1.52414 0.33387I
a = 0.521304 0.976377I
b = 1.39892 + 0.94174I
1.0116 17.5021I 0
u = 1.56065
a = 1.42405
b = 0.642348
8.44045 0
u = 1.53200 + 0.30838I
a = 0.544303 0.975626I
b = 1.32328 + 0.85818I
6.4092 13.1952I 0
u = 1.53200 0.30838I
a = 0.544303 + 0.975626I
b = 1.32328 0.85818I
6.4092 + 13.1952I 0
u = 1.54225 + 0.29438I
a = 0.069262 + 0.717819I
b = 0.570637 0.119504I
3.25509 1.51532I 0
u = 1.54225 0.29438I
a = 0.069262 0.717819I
b = 0.570637 + 0.119504I
3.25509 + 1.51532I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60036 + 0.03902I
a = 0.339371 + 0.487975I
b = 0.710583 0.058904I
4.93556 4.01294I 0
u = 1.60036 0.03902I
a = 0.339371 0.487975I
b = 0.710583 + 0.058904I
4.93556 + 4.01294I 0
u = 1.60243 + 0.10816I
a = 0.405139 0.408093I
b = 0.827639 + 0.088426I
8.97902 0.30493I 0
u = 1.60243 0.10816I
a = 0.405139 + 0.408093I
b = 0.827639 0.088426I
8.97902 + 0.30493I 0
u = 1.60735 + 0.20212I
a = 0.386947 + 0.314917I
b = 0.890916 0.105990I
5.13275 + 4.82360I 0
u = 1.60735 0.20212I
a = 0.386947 0.314917I
b = 0.890916 + 0.105990I
5.13275 4.82360I 0
u = 0.346577
a = 2.36075
b = 0.943840
2.83068 10.4240
u = 0.152629 + 0.293549I
a = 4.52463 0.47527I
b = 0.490294 + 0.609024I
4.95962 + 6.04460I 1.17092 11.50660I
u = 0.152629 0.293549I
a = 4.52463 + 0.47527I
b = 0.490294 0.609024I
4.95962 6.04460I 1.17092 + 11.50660I
u = 0.008205 + 0.246331I
a = 0.08505 3.19265I
b = 1.45669 + 0.61935I
7.62756 1.79977I 9.81021 + 0.38909I
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.008205 0.246331I
a = 0.08505 + 3.19265I
b = 1.45669 0.61935I
7.62756 + 1.79977I 9.81021 0.38909I
u = 0.127305 + 0.126214I
a = 7.28555 3.50390I
b = 0.587613 0.256457I
0.85046 2.18730I 11.9288 + 11.8413I
u = 0.127305 0.126214I
a = 7.28555 + 3.50390I
b = 0.587613 + 0.256457I
0.85046 + 2.18730I 11.9288 11.8413I
14
II. I
u
2
=
hu
20
9u
18
+· · ·2u
2
+b, u
19
+10u
17
+· · ·+a+3, u
21
11u
19
+· · ·6u
2
+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
2
=
u
19
10u
17
+ ··· + 9u
2
3
u
20
+ 9u
18
+ ··· u
3
+ 2u
2
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
20
+ u
19
+ ··· + 11u
2
3
u
20
+ 9u
18
+ ··· u
3
+ 2u
2
a
9
=
2u
18
+ 18u
16
+ ··· 2u
2
3u
u
19
10u
17
+ ··· + 2u 1
a
3
=
u
19
10u
17
+ ··· + 9u
2
2
u
18
+ 9u
16
+ ··· + 4u
2
u
a
7
=
u
20
+ 10u
18
+ ··· + u + 3
4u
20
u
19
+ ··· + 5u + 1
a
8
=
5u
20
+ 8u
19
+ ··· 8u 7
5u
20
+ 8u
19
+ ··· 4u 8
a
12
=
7u
20
+ 9u
19
+ ··· 8u 9
4u
19
+ 4u
18
+ ··· + 9u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
20
+ 6u
19
+ 39u
18
58u
17
158u
16
+ 228u
15
+ 345u
14
448u
13
453u
12
+
390u
11
+ 417u
10
+ 55u
9
343u
8
362u
7
+ 240u
6
+ 200u
5
107u
4
6u
3
+ 46u
2
+ 5u 20
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
6u
19
+ ··· + 9u 1
c
2
u
21
3u
20
+ ··· u + 1
c
3
u
21
+ u
19
+ ··· 4u
3
1
c
4
, c
5
u
21
11u
19
+ ··· 6u
2
+ 1
c
6
u
21
+ 3u
20
+ ··· u 1
c
7
u
21
+ u
20
+ ··· 2u 1
c
8
u
21
u
20
+ ··· 2u 1
c
9
u
21
+ 4u
18
+ ··· u
2
1
c
10
u
21
11u
19
+ ··· + 6u
2
1
c
11
, c
12
u
21
u
20
+ ··· 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
12y
20
+ ··· + 9y 1
c
2
, c
6
y
21
21y
20
+ ··· + 19y 1
c
3
y
21
+ 2y
20
+ ··· + 8y
2
1
c
4
, c
5
, c
10
y
21
22y
20
+ ··· + 12y 1
c
7
, c
11
, c
12
y
21
+ 21y
20
+ ··· + 14y 1
c
8
y
21
7y
20
+ ··· + 12y 1
c
9
y
21
8y
19
+ ··· 2y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.255744 + 0.889960I
a = 0.672577 0.339366I
b = 0.727132 0.154624I
1.97479 + 1.31552I 5.85122 2.55614I
u = 0.255744 0.889960I
a = 0.672577 + 0.339366I
b = 0.727132 + 0.154624I
1.97479 1.31552I 5.85122 + 2.55614I
u = 1.255380 + 0.022059I
a = 0.841157 + 0.162242I
b = 1.93676 0.57055I
4.36898 + 1.63610I 2.61412 0.59366I
u = 1.255380 0.022059I
a = 0.841157 0.162242I
b = 1.93676 + 0.57055I
4.36898 1.63610I 2.61412 + 0.59366I
u = 1.26425
a = 0.931959
b = 1.79336
0.221803 2.62670
u = 1.320610 + 0.146791I
a = 0.334116 0.914850I
b = 0.177692 + 1.239600I
1.41756 + 7.11034I 3.34752 5.62759I
u = 1.320610 0.146791I
a = 0.334116 + 0.914850I
b = 0.177692 1.239600I
1.41756 7.11034I 3.34752 + 5.62759I
u = 1.336660 + 0.309033I
a = 0.040182 0.647615I
b = 1.15216 + 0.84838I
1.72885 + 2.95479I 7.19455 2.80057I
u = 1.336660 0.309033I
a = 0.040182 + 0.647615I
b = 1.15216 0.84838I
1.72885 2.95479I 7.19455 + 2.80057I
u = 1.380070 + 0.215882I
a = 0.054776 + 0.872274I
b = 0.679947 0.858717I
4.60051 4.33911I 7.30384 + 8.07755I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.380070 0.215882I
a = 0.054776 0.872274I
b = 0.679947 + 0.858717I
4.60051 + 4.33911I 7.30384 8.07755I
u = 0.470407 + 0.375563I
a = 0.053666 1.392060I
b = 0.234865 0.689640I
4.67657 5.22027I 1.18453 + 2.23752I
u = 0.470407 0.375563I
a = 0.053666 + 1.392060I
b = 0.234865 + 0.689640I
4.67657 + 5.22027I 1.18453 2.23752I
u = 0.297006 + 0.518050I
a = 0.93330 + 1.24179I
b = 0.413320 + 0.328273I
0.53747 + 1.63141I 4.38841 1.07862I
u = 0.297006 0.518050I
a = 0.93330 1.24179I
b = 0.413320 0.328273I
0.53747 1.63141I 4.38841 + 1.07862I
u = 0.567113 + 0.064864I
a = 1.198340 + 0.359469I
b = 1.072880 + 0.452086I
6.99512 1.93767I 3.59564 + 3.74186I
u = 0.567113 0.064864I
a = 1.198340 0.359469I
b = 1.072880 0.452086I
6.99512 + 1.93767I 3.59564 3.74186I
u = 0.533430
a = 1.46571
b = 0.953611
2.54293 18.1270
u = 1.57816 + 0.18852I
a = 0.597845 + 0.576829I
b = 0.711293 0.283542I
4.68645 5.33753I 0.00830 + 5.00508I
u = 1.57816 0.18852I
a = 0.597845 0.576829I
b = 0.711293 + 0.283542I
4.68645 + 5.33753I 0.00830 5.00508I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.59095
a = 1.13893
b = 0.573444
8.21101 8.01970
20
III. I
u
3
= h−u
2
+ b, a 1, u
15
3u
13
+ · · · + u
2
1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
2
=
1
u
2
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
2
+ 1
u
2
a
9
=
u
u
3
+ u
a
3
=
u
4
u
2
+ 1
u
6
2u
4
+ u
2
a
7
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
2
a
8
=
u
7
+ 2u
3
u
7
+ u
5
+ u
a
12
=
u
12
+ u
11
+ u
10
2u
9
+ 3u
8
u
7
u
6
+ 2u
5
3u
4
+ u
3
u + 1
u
13
u
12
3u
11
+ 2u
10
+ u
9
+ u
8
+ 3u
7
2u
6
u
5
u
4
2u
3
+ u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 4u
3
+ 4u 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
6u
14
+ ··· + 2u 1
c
2
, c
6
u
15
+ 6u
14
+ ··· + 2u + 1
c
3
u
15
+ 3u
13
+ ··· + 2u 1
c
4
, c
5
, c
9
c
10
u
15
3u
13
+ u
10
+ 5u
9
2u
8
u
6
3u
5
+ 2u
4
u
3
+ u
2
1
c
7
, c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
5
c
8
(u
3
u
2
+ 1)
5
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
15
18y
14
+ ··· + 10y 1
c
3
y
15
+ 6y
14
+ ··· + 22y 1
c
4
, c
5
, c
9
c
10
y
15
6y
14
+ ··· + 2y 1
c
7
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
5
c
8
(y
3
y
2
+ 2y 1)
5
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.131335 + 0.994914I
a = 1.00000
b = 0.972606 0.261334I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.131335 0.994914I
a = 1.00000
b = 0.972606 + 0.261334I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.188117 + 0.879962I
a = 1.00000
b = 0.738945 + 0.331072I
1.11345 9.01951 + 0.I
u = 0.188117 0.879962I
a = 1.00000
b = 0.738945 0.331072I
1.11345 9.01951 + 0.I
u = 0.337905 + 0.833072I
a = 1.00000
b = 0.579829 0.562998I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.337905 0.833072I
a = 1.00000
b = 0.579829 + 0.562998I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.12246
a = 1.00000
b = 1.25992
1.11345 9.01950
u = 1.188510 + 0.170996I
a = 1.00000
b = 1.38332 + 0.40646I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.188510 0.170996I
a = 1.00000
b = 1.38332 0.40646I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.658707 + 0.399034I
a = 1.00000
b = 0.274667 + 0.525693I
3.02413 2.82812I 2.49024 + 2.97945I
24
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.658707 0.399034I
a = 1.00000
b = 0.274667 0.525693I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.35788
a = 1.00000
b = 1.84385
1.11345 9.01950
u = 1.377980 + 0.066196I
a = 1.00000
b = 1.89445 0.18243I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.377980 0.066196I
a = 1.00000
b = 1.89445 + 0.18243I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.611656
a = 1.00000
b = 0.374123
1.11345 9.01950
25
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
6u
14
+ ··· + 2u 1)(u
21
6u
19
+ ··· + 9u 1)
· (u
93
7u
92
+ ··· + 87046u 14548)
c
2
(u
15
+ 6u
14
+ ··· + 2u + 1)(u
21
3u
20
+ ··· u + 1)
· (u
93
4u
92
+ ··· + 818u + 292)
c
3
(u
15
+ 3u
13
+ ··· + 2u 1)(u
21
+ u
19
+ ··· 4u
3
1)
· (u
93
u
92
+ ··· + 82u 4)
c
4
, c
5
(u
15
3u
13
+ u
10
+ 5u
9
2u
8
u
6
3u
5
+ 2u
4
u
3
+ u
2
1)
· (u
21
11u
19
+ ··· 6u
2
+ 1)(u
93
+ u
92
+ ··· 18u + 4)
c
6
(u
15
+ 6u
14
+ ··· + 2u + 1)(u
21
+ 3u
20
+ ··· u 1)
· (u
93
4u
92
+ ··· + 818u + 292)
c
7
((u
3
+ u
2
+ 2u + 1)
5
)(u
21
+ u
20
+ ··· 2u 1)
· (u
93
5u
92
+ ··· 62u + 4)
c
8
((u
3
u
2
+ 1)
5
)(u
21
u
20
+ ··· 2u 1)
· (u
93
+ 5u
92
+ ··· 263654u + 40564)
c
9
(u
15
3u
13
+ u
10
+ 5u
9
2u
8
u
6
3u
5
+ 2u
4
u
3
+ u
2
1)
· (u
21
+ 4u
18
+ ··· u
2
1)(u
93
+ 3u
92
+ ··· 3506u 1364)
c
10
(u
15
3u
13
+ u
10
+ 5u
9
2u
8
u
6
3u
5
+ 2u
4
u
3
+ u
2
1)
· (u
21
11u
19
+ ··· + 6u
2
1)(u
93
+ u
92
+ ··· 18u + 4)
c
11
, c
12
((u
3
+ u
2
+ 2u + 1)
5
)(u
21
u
20
+ ··· 2u + 1)
· (u
93
5u
92
+ ··· 62u + 4)
26
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
18y
14
+ ··· + 10y 1)(y
21
12y
20
+ ··· + 9y 1)
· (y
93
19y
92
+ ··· + 9425154940y 211644304)
c
2
, c
6
(y
15
18y
14
+ ··· + 10y 1)(y
21
21y
20
+ ··· + 19y 1)
· (y
93
48y
92
+ ··· + 1643820y 85264)
c
3
(y
15
+ 6y
14
+ ··· + 22y 1)(y
21
+ 2y
20
+ ··· + 8y
2
1)
· (y
93
9y
92
+ ··· + 3164y 16)
c
4
, c
5
, c
10
(y
15
6y
14
+ ··· + 2y 1)(y
21
22y
20
+ ··· + 12y 1)
· (y
93
101y
92
+ ··· 468y 16)
c
7
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
5
)(y
21
+ 21y
20
+ ··· + 14y 1)
· (y
93
+ 81y
92
+ ··· + 588y 16)
c
8
((y
3
y
2
+ 2y 1)
5
)(y
21
7y
20
+ ··· + 12y 1)
· (y
93
27y
92
+ ··· + 67097196492y 1645438096)
c
9
(y
15
6y
14
+ ··· + 2y 1)(y
21
8y
19
+ ··· 2y 1)
· (y
93
+ 21y
92
+ ··· 67270084y 1860496)
27