12a
0923
(K12a
0923
)
A knot diagram
1
Linearized knot diagam
4 6 9 11 2 10 12 1 3 5 7 8
Solving Sequence
2,5
6
3,11
4 1 10 7 12 9 8
c
5
c
2
c
4
c
1
c
10
c
6
c
11
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−169316u
55
+ 765227u
54
+ ··· + 1990656b + 207504590,
64741301u
55
347996846u
54
+ ··· + 709337088a 165503765534,
u
56
6u
55
+ ··· 5065u + 2138i
I
u
2
= hu
5
+ b + u, 7u
5
2u
4
+ u
3
+ u
2
+ 5a 8u 3, u
6
+ u
4
+ 2u
2
+ 1i
I
u
3
= h−a
2
+ b a, a
3
+ 2a
2
+ a 1, u + 1i
I
u
4
= hb
4
a
2
2b
3
a + 2b
2
a
2
b
2
a + b
2
2ba + a
2
+ b a 1, u + 1i
I
v
1
= ha, b
6
+ 2b
4
+ b
3
+ b
2
+ b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 71 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−1.69×10
5
u
55
+7.65×10
5
u
54
+· · · +1.99×10
6
b+2.08×10
8
, 6.47×10
7
u
55
3.48 × 10
8
u
54
+ · · · + 7.09 × 10
8
a 1.66 × 10
11
, u
56
6u
55
+ · · · 5065u + 2138i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.0912701u
55
+ 0.490594u
54
+ ··· 305.555u + 233.322
0.0850554u
55
0.384409u
54
+ ··· + 202.825u 104.239
a
4
=
0.0214370u
55
+ 0.107795u
54
+ ··· 64.6193u + 46.3327
0.00435384u
55
0.0207994u
54
+ ··· + 12.3366u 6.37981
a
1
=
0.0281056u
55
0.145026u
54
+ ··· + 85.8717u 67.5545
0.0278343u
55
+ 0.123449u
54
+ ··· 62.7416u + 34.1313
a
10
=
0.00621477u
55
+ 0.106185u
54
+ ··· 102.730u + 129.082
0.0850554u
55
0.384409u
54
+ ··· + 202.825u 104.239
a
7
=
0.0442234u
55
0.241015u
54
+ ··· + 145.317u 135.156
0.0182020u
55
+ 0.0910577u
54
+ ··· 54.3352u + 39.5251
a
12
=
0.111606u
55
0.585341u
54
+ ··· + 348.486u 276.321
0.0596452u
55
0.316842u
54
+ ··· + 200.960u 123.452
a
9
=
0.0627283u
55
0.266879u
54
+ ··· + 135.607u 49.3441
0.0142003u
55
0.0564472u
54
+ ··· + 22.6996u 12.6041
a
8
=
0.180172u
55
0.822387u
54
+ ··· + 451.374u 189.430
0.0792387u
55
0.456648u
54
+ ··· + 304.815u 239.788
(ii) Obstruction class = 1
(iii) Cusp Shapes =
563051
2985984
u
55
+
2308397
2985984
u
54
+ ···
186951611
497664
u +
9690719
186624
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
16(16u
56
48u
55
+ ··· + 388278u + 882567)
c
2
, c
5
u
56
6u
55
+ ··· 5065u + 2138
c
3
, c
9
9(9u
56
9u
55
+ ··· + 80u + 25)
c
4
, c
10
9(9u
56
9u
55
+ ··· 50u + 25)
c
6
16(16u
56
+ 32u
55
+ ··· + 735282u + 119709)
c
7
, c
8
, c
11
c
12
u
56
+ 4u
55
+ ··· 7u + 62
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
256
· (256y
56
11136y
55
+ ··· 10663154787870y + 778924509489)
c
2
, c
5
y
56
32y
55
+ ··· 6390845y + 4571044
c
3
, c
9
81(81y
56
+ 4239y
55
+ ··· + 12400y + 625)
c
4
, c
10
81(81y
56
+ 1971y
55
+ ··· + 16400y + 625)
c
6
256(256y
56
10624y
55
+ ··· 1.77562 × 10
11
y + 1.43302 × 10
10
)
c
7
, c
8
, c
11
c
12
y
56
66y
55
+ ··· 2901y + 3844
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.984706 + 0.213928I
a = 2.54376 1.38909I
b = 0.219398 + 0.692771I
10.33120 0.88863I 11.9568 + 8.3028I
u = 0.984706 0.213928I
a = 2.54376 + 1.38909I
b = 0.219398 0.692771I
10.33120 + 0.88863I 11.9568 8.3028I
u = 0.981741 + 0.367067I
a = 1.39029 + 1.32174I
b = 0.297204 0.885770I
1.84811 1.66866I 10.40782 + 3.06587I
u = 0.981741 0.367067I
a = 1.39029 1.32174I
b = 0.297204 + 0.885770I
1.84811 + 1.66866I 10.40782 3.06587I
u = 0.392152 + 0.823059I
a = 0.331863 + 0.870571I
b = 0.459949 0.211030I
4.33948 + 2.58823I 15.9377 3.4312I
u = 0.392152 0.823059I
a = 0.331863 0.870571I
b = 0.459949 + 0.211030I
4.33948 2.58823I 15.9377 + 3.4312I
u = 0.210486 + 0.885885I
a = 0.754309 0.859129I
b = 0.916464 + 0.273165I
13.7069 + 4.2294I 15.0908 2.2409I
u = 0.210486 0.885885I
a = 0.754309 + 0.859129I
b = 0.916464 0.273165I
13.7069 4.2294I 15.0908 + 2.2409I
u = 1.117840 + 0.121937I
a = 0.183222 0.754249I
b = 0.175598 0.720988I
2.33703 0.81235I 9.18182 + 8.94342I
u = 1.117840 0.121937I
a = 0.183222 + 0.754249I
b = 0.175598 + 0.720988I
2.33703 + 0.81235I 9.18182 8.94342I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.783032 + 0.807710I
a = 0.52560 + 1.38392I
b = 0.010851 1.124970I
1.59922 2.81223I 5.39241 + 2.86664I
u = 0.783032 0.807710I
a = 0.52560 1.38392I
b = 0.010851 + 1.124970I
1.59922 + 2.81223I 5.39241 2.86664I
u = 0.066075 + 1.135000I
a = 0.36094 1.62838I
b = 0.615579 + 1.197570I
10.9441 9.8213I 12.63911 + 5.52696I
u = 0.066075 1.135000I
a = 0.36094 + 1.62838I
b = 0.615579 1.197570I
10.9441 + 9.8213I 12.63911 5.52696I
u = 0.411231 + 0.747950I
a = 0.36943 1.47797I
b = 0.166040 + 1.104020I
3.36428 0.23401I 0.97991 + 2.43933I
u = 0.411231 0.747950I
a = 0.36943 + 1.47797I
b = 0.166040 1.104020I
3.36428 + 0.23401I 0.97991 2.43933I
u = 1.098780 + 0.455875I
a = 1.02438 1.04747I
b = 0.490597 + 1.118040I
1.18518 4.32062I 5.36534 + 4.17876I
u = 1.098780 0.455875I
a = 1.02438 + 1.04747I
b = 0.490597 1.118040I
1.18518 + 4.32062I 5.36534 4.17876I
u = 1.182510 + 0.227112I
a = 0.429835 + 0.746826I
b = 0.377689 + 0.830409I
9.97809 1.88428I 12.95942 + 3.16374I
u = 1.182510 0.227112I
a = 0.429835 0.746826I
b = 0.377689 0.830409I
9.97809 + 1.88428I 12.95942 3.16374I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.651226 + 1.017980I
a = 0.229212 + 1.095150I
b = 0.154199 0.511987I
4.36511 + 2.70896I 17.8835 1.9240I
u = 0.651226 1.017980I
a = 0.229212 1.095150I
b = 0.154199 + 0.511987I
4.36511 2.70896I 17.8835 + 1.9240I
u = 0.118014 + 1.203290I
a = 0.30642 + 1.47527I
b = 0.503344 1.061300I
2.28016 6.66641I 11.44494 + 7.11180I
u = 0.118014 1.203290I
a = 0.30642 1.47527I
b = 0.503344 + 1.061300I
2.28016 + 6.66641I 11.44494 7.11180I
u = 0.143056 + 0.772743I
a = 0.641494 1.196870I
b = 0.574548 + 1.166620I
5.75586 + 5.22238I 8.67240 3.67476I
u = 0.143056 0.772743I
a = 0.641494 + 1.196870I
b = 0.574548 1.166620I
5.75586 5.22238I 8.67240 + 3.67476I
u = 0.233014 + 0.741341I
a = 0.428118 + 1.316410I
b = 0.373389 1.116040I
2.07162 + 3.27052I 5.16362 5.02421I
u = 0.233014 0.741341I
a = 0.428118 1.316410I
b = 0.373389 + 1.116040I
2.07162 3.27052I 5.16362 + 5.02421I
u = 1.154880 + 0.445094I
a = 0.940220 + 0.970110I
b = 0.705436 1.185240I
0.73558 7.71938I 8.00000 + 9.01590I
u = 1.154880 0.445094I
a = 0.940220 0.970110I
b = 0.705436 + 1.185240I
0.73558 + 7.71938I 8.00000 9.01590I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.186190 + 0.441930I
a = 0.863048 0.971863I
b = 0.89596 + 1.24873I
8.91014 9.70074I 0
u = 1.186190 0.441930I
a = 0.863048 + 0.971863I
b = 0.89596 1.24873I
8.91014 + 9.70074I 0
u = 0.281565 + 1.254220I
a = 0.289928 1.294920I
b = 0.396705 + 0.868356I
0.09114 1.67831I 0
u = 0.281565 1.254220I
a = 0.289928 + 1.294920I
b = 0.396705 0.868356I
0.09114 + 1.67831I 0
u = 1.324820 + 0.384063I
a = 0.055551 + 0.278282I
b = 1.364170 + 0.268279I
18.4368 8.6427I 0
u = 1.324820 0.384063I
a = 0.055551 0.278282I
b = 1.364170 0.268279I
18.4368 + 8.6427I 0
u = 1.335470 + 0.358449I
a = 0.0527808 0.1215550I
b = 1.127220 0.238919I
9.45136 6.69405I 0
u = 1.335470 0.358449I
a = 0.0527808 + 0.1215550I
b = 1.127220 + 0.238919I
9.45136 + 6.69405I 0
u = 1.225400 + 0.652300I
a = 0.32305 1.43167I
b = 0.732798 + 0.721623I
16.5150 + 1.3611I 0
u = 1.225400 0.652300I
a = 0.32305 + 1.43167I
b = 0.732798 0.721623I
16.5150 1.3611I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37863 + 0.31544I
a = 0.092380 0.165122I
b = 0.799954 + 0.318153I
6.21382 3.21160I 0
u = 1.37863 0.31544I
a = 0.092380 + 0.165122I
b = 0.799954 0.318153I
6.21382 + 3.21160I 0
u = 1.35351 + 0.56530I
a = 0.87548 1.35090I
b = 0.72269 + 1.34990I
15.0022 + 15.8154I 0
u = 1.35351 0.56530I
a = 0.87548 + 1.35090I
b = 0.72269 1.34990I
15.0022 15.8154I 0
u = 1.36457 + 0.58672I
a = 0.77901 + 1.28814I
b = 0.65208 1.26539I
6.2885 + 12.9423I 0
u = 1.36457 0.58672I
a = 0.77901 1.28814I
b = 0.65208 + 1.26539I
6.2885 12.9423I 0
u = 1.32133 + 0.68751I
a = 0.471952 + 1.284130I
b = 0.577036 0.948979I
6.95153 + 3.85491I 0
u = 1.32133 0.68751I
a = 0.471952 1.284130I
b = 0.577036 + 0.948979I
6.95153 3.85491I 0
u = 1.46368 + 0.35591I
a = 0.123992 + 0.336867I
b = 0.659559 0.634367I
7.88342 + 0.96412I 0
u = 1.46368 0.35591I
a = 0.123992 0.336867I
b = 0.659559 + 0.634367I
7.88342 0.96412I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37201 + 0.62798I
a = 0.645034 1.241570I
b = 0.581916 + 1.144830I
3.77550 + 8.37956I 0
u = 1.37201 0.62798I
a = 0.645034 + 1.241570I
b = 0.581916 1.144830I
3.77550 8.37956I 0
u = 1.46550 + 0.44360I
a = 0.324608 0.372587I
b = 0.689131 + 0.909581I
15.9597 + 4.0146I 0
u = 1.46550 0.44360I
a = 0.324608 + 0.372587I
b = 0.689131 0.909581I
15.9597 4.0146I 0
u = 0.288024 + 0.269790I
a = 0.642999 0.968459I
b = 0.136152 0.381527I
0.573993 + 0.867939I 10.17045 7.71087I
u = 0.288024 0.269790I
a = 0.642999 + 0.968459I
b = 0.136152 + 0.381527I
0.573993 0.867939I 10.17045 + 7.71087I
10
II. I
u
2
= hu
5
+ b + u, 7u
5
2u
4
+ u
3
+ u
2
+ 5a 8u 3, u
6
+ u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
7
5
u
5
+
2
5
u
4
+ ··· +
8
5
u +
3
5
u
5
u
a
4
=
4
5
u
5
1
5
u
4
+ ··· +
6
5
u
4
5
1
a
1
=
0.240000u
5
+ 0.560000u
4
+ ··· 0.160000u + 1.04000
1
5
u
5
1
5
u
4
+ ··· +
1
5
u
4
5
a
10
=
2
5
u
5
+
2
5
u
4
+ ··· +
3
5
u +
3
5
u
5
u
a
7
=
0.240000u
5
+ 0.560000u
4
+ ··· 0.160000u + 2.04000
1
5
u
5
1
5
u
4
+ ···
4
5
u
4
5
a
12
=
0.0800000u
5
+ 0.520000u
4
+ ··· + 0.280000u + 0.680000
2
5
u
5
2
5
u
4
+ ··· +
2
5
u
3
5
a
9
=
2
5
u
5
+
7
5
u
4
+ ··· +
3
5
u +
8
5
u
5
u
4
2u
2
u 2
a
8
=
0.0800000u
5
+ 1.52000u
4
+ ··· + 0.280000u + 1.68000
2
5
u
5
7
5
u
4
+ ···
3
5
u
8
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
5(5u
6
14u
5
+ 23u
4
24u
3
+ 16u
2
6u + 1)
c
2
, c
5
u
6
+ u
4
+ 2u
2
+ 1
c
3
, c
4
, c
9
c
10
(u
2
+ 1)
3
c
6
5(5u
6
+ 8u
5
+ 3u
4
+ 2u
3
+ 4u
2
+ 2u + 1)
c
7
, c
8
, c
11
c
12
u
6
3u
4
+ 2u
2
+ 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
25(25y
6
+ 34y
5
+ 17y
4
+ 2y
3
+ 14y
2
4y + 1)
c
2
, c
5
(y
3
+ y
2
+ 2y + 1)
2
c
3
, c
4
, c
9
c
10
(y + 1)
6
c
6
25(25y
6
34y
5
+ 17y
4
2y
3
+ 14y
2
+ 4y + 1)
c
7
, c
8
, c
11
c
12
(y
3
3y
2
+ 2y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.744862 + 0.877439I
a = 0.38847 1.86784I
b = 1.000000I
3.02413 + 2.82812I 11.50976 + 2.97945I
u = 0.744862 0.877439I
a = 0.38847 + 1.86784I
b = 1.000000I
3.02413 2.82812I 11.50976 2.97945I
u = 0.744862 + 0.877439I
a = 0.432328 0.895156I
b = 1.000000I
3.02413 2.82812I 11.50976 2.97945I
u = 0.744862 0.877439I
a = 0.432328 + 0.895156I
b = 1.000000I
3.02413 + 2.82812I 11.50976 + 2.97945I
u = 0.754878I
a = 0.84386 + 1.63701I
b = 1.000000I
1.11345 4.98050
u = 0.754878I
a = 0.84386 1.63701I
b = 1.000000I
1.11345 4.98050
14
III. I
u
3
= h−a
2
+ b a, a
3
+ 2a
2
+ a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
3
=
1
0
a
11
=
a
a
2
+ a
a
4
=
a
2
+ a
a
a
1
=
a
a
2
a
a
10
=
a
2
+ 2a
a
2
+ a
a
7
=
a
a
2
+ a
a
12
=
a
a
2
+ a
a
9
=
a
a
2
+ a
a
8
=
a
a
2
+ a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
9
, c
10
u
3
+ u + 1
c
2
, c
5
(u + 1)
3
c
6
u
3
+ 2u
2
+ u 1
c
7
, c
8
, c
11
c
12
u
3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
9
, c
10
y
3
+ 2y
2
+ y 1
c
2
, c
5
(y 1)
3
c
6
y
3
2y
2
+ 5y 1
c
7
, c
8
, c
11
c
12
y
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.23279 + 0.79255I
b = 0.341164 1.161540I
1.64493 6.00000
u = 1.00000
a = 1.23279 0.79255I
b = 0.341164 + 1.161540I
1.64493 6.00000
u = 1.00000
a = 0.465571
b = 0.682328
1.64493 6.00000
18
IV. I
u
4
= hb
4
a
2
2b
3
a + 2b
2
a
2
b
2
a + b
2
2ba + a
2
+ b a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
3
=
1
0
a
11
=
a
b
a
4
=
ba + 1
b
2
a
1
=
b
2
a
2
+ 2ba 1
b
3
a + b
2
1
a
10
=
b + a
b
a
7
=
ba a
2
+ 1
ba + 1
a
12
=
b
3
a
2
a
3
b
2
+ 2b
2
a a
3
b + 2a
b
3
a
2
+ 2b
2
a a
2
b + a
a
9
=
a
b
a
8
=
b
3
a
2
+ a
3
b
2
b
2
a
2
2b
2
a + a
3
+ ba a
2
+ b a
b
3
a
2
b
3
a 2b
2
a + a
2
b + b
2
ba + b a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
19
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
4
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
10.5276 16.0000
20
V. I
v
1
= ha, b
6
+ 2b
4
+ b
3
+ b
2
+ b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
3
=
1
0
a
11
=
0
b
a
4
=
1
b
2
a
1
=
b
2
+ 1
b
4
a
10
=
b
b
a
7
=
b
2
+ 1
b
2
a
12
=
b
5
2b
3
b
b
5
b
3
+ b
a
9
=
0
b
a
8
=
b
5
+ 2b
3
+ b
b
5
+ b
4
+ b
3
+ b
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1
c
2
, c
5
u
6
c
3
, c
4
, c
6
c
9
, c
10
u
6
+ 2u
4
u
3
+ u
2
u 1
c
7
, c
8
, c
11
c
12
(u
2
u 1)
3
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
4y
5
+ 18y
4
35y
3
+ 43y
2
19y + 1
c
2
, c
5
y
6
c
3
, c
4
, c
6
c
9
, c
10
y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1
c
7
, c
8
, c
11
c
12
(y
2
3y + 1)
3
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.896795
8.88264 10.0000
v = 1.00000
a = 0
b = 0.248003 + 1.088360I
0.986960 10.0000
v = 1.00000
a = 0
b = 0.248003 1.088360I
0.986960 10.0000
v = 1.00000
a = 0
b = 0.448397 + 1.266170I
8.88264 10.0000
v = 1.00000
a = 0
b = 0.448397 1.266170I
8.88264 10.0000
v = 1.00000
a = 0
b = 0.496006
0.986960 10.0000
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
80(u
3
+ u + 1)(u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1)
· (5u
6
14u
5
+ 23u
4
24u
3
+ 16u
2
6u + 1)
· (16u
56
48u
55
+ ··· + 388278u + 882567)
c
2
, c
5
u
6
(u + 1)
3
(u
6
+ u
4
+ 2u
2
+ 1)(u
56
6u
55
+ ··· 5065u + 2138)
c
3
, c
9
9(u
2
+ 1)
3
(u
3
+ u + 1)(u
6
+ 2u
4
u
3
+ u
2
u 1)
· (9u
56
9u
55
+ ··· + 80u + 25)
c
4
, c
10
9(u
2
+ 1)
3
(u
3
+ u + 1)(u
6
+ 2u
4
u
3
+ u
2
u 1)
· (9u
56
9u
55
+ ··· 50u + 25)
c
6
80(u
3
+ 2u
2
+ u 1)(u
6
+ 2u
4
u
3
+ u
2
u 1)
· (5u
6
+ 8u
5
+ 3u
4
+ 2u
3
+ 4u
2
+ 2u + 1)
· (16u
56
+ 32u
55
+ ··· + 735282u + 119709)
c
7
, c
8
, c
11
c
12
u
3
(u
2
u 1)
3
(u
6
3u
4
+ 2u
2
+ 1)(u
56
+ 4u
55
+ ··· 7u + 62)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
6400(y
3
+ 2y
2
+ y 1)(y
6
4y
5
+ 18y
4
35y
3
+ 43y
2
19y + 1)
· (25y
6
+ 34y
5
+ 17y
4
+ 2y
3
+ 14y
2
4y + 1)
· (256y
56
11136y
55
+ ··· 10663154787870y + 778924509489)
c
2
, c
5
y
6
(y 1)
3
(y
3
+ y
2
+ 2y + 1)
2
· (y
56
32y
55
+ ··· 6390845y + 4571044)
c
3
, c
9
81(y + 1)
6
(y
3
+ 2y
2
+ y 1)(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)
· (81y
56
+ 4239y
55
+ ··· + 12400y + 625)
c
4
, c
10
81(y + 1)
6
(y
3
+ 2y
2
+ y 1)(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)
· (81y
56
+ 1971y
55
+ ··· + 16400y + 625)
c
6
6400(y
3
2y
2
+ 5y 1)(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)
· (25y
6
34y
5
+ 17y
4
2y
3
+ 14y
2
+ 4y + 1)
· (256y
56
10624y
55
+ ··· 177561504270y + 14330244681)
c
7
, c
8
, c
11
c
12
y
3
(y
2
3y + 1)
3
(y
3
3y
2
+ 2y + 1)
2
· (y
56
66y
55
+ ··· 2901y + 3844)
26