12a
0924
(K12a
0924
)
A knot diagram
1
Linearized knot diagam
4 6 9 11 2 10 12 1 3 5 8 7
Solving Sequence
2,5
6
3,11
4 1 10 7 9 8 12
c
5
c
2
c
4
c
1
c
10
c
6
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−47905927u
73
+ 611463177u
72
+ ··· + 3439853568b + 11169010901668,
4109478614099u
73
+ 27248497195437u
72
+ ··· + 29824677052416a + 129084806711241884,
u
74
8u
73
+ ··· 216611u + 52022i
I
u
2
= hu
3
+ b + 2u, 8u
3
3u
2
+ 5a 17u 7, u
4
+ 3u
2
+ 1i
I
u
3
= ha
2
+ b a, a
3
2a
2
+ a + 1, u + 1i
I
u
4
= hb
6
a
3
3b
5
a
2
+ ··· a
2
+ 1, u + 1i
I
v
1
= ha, b
6
b
5
+ 2b
4
2b
3
+ 2b
2
2b + 1, v 1i
I
v
2
= ha, b
3
+ b
2
+ 2b + 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 90 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.79 × 10
7
u
73
+ 6.11 × 10
8
u
72
+ · · · + 3.44 × 10
9
b + 1.12 ×
10
13
, 4.11 × 10
12
u
73
+ 2.72 × 10
13
u
72
+ · · · + 2.98 × 10
13
a + 1.29 ×
10
17
, u
74
8u
73
+ · · · 216611u + 52022i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.137788u
73
0.913623u
72
+ ··· + 16267.3u 4328.12
0.0139267u
73
0.177758u
72
+ ··· + 9142.14u 3246.94
a
4
=
0.00499643u
73
+ 0.0350880u
72
+ ··· 833.787u + 264.234
0.0000461649u
73
0.000532115u
72
+ ··· + 23.8243u 7.51639
a
1
=
0.00140672u
73
0.0127174u
72
+ ··· + 521.516u 198.382
0.00563162u
73
+ 0.0396538u
72
+ ··· 889.693u + 268.556
a
10
=
0.151715u
73
1.09138u
72
+ ··· + 25409.5u 7575.06
0.0139267u
73
0.177758u
72
+ ··· + 9142.14u 3246.94
a
7
=
0.00526992u
73
0.0422065u
72
+ ··· + 1460.05u 545.028
0.00530723u
73
+ 0.0369747u
72
+ ··· 859.358u + 270.028
a
9
=
0.0114518u
73
+ 0.0715137u
72
+ ··· 1087.20u + 313.766
0.103761u
73
0.693948u
72
+ ··· + 13273.7u 3725.94
a
8
=
0.0202394u
73
+ 0.0938447u
72
+ ··· + 1301.88u 735.830
0.0939198u
73
+ 0.678803u
72
+ ··· 15904.3u + 4756.89
a
12
=
0.0629844u
73
0.398283u
72
+ ··· + 5636.71u 1251.79
0.0577805u
73
0.401753u
72
+ ··· + 8772.09u 2612.98
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
143175559
644972544
u
73
+
416881405
286654464
u
72
+ ···
130085081890987
5159780352
u +
17208542618977
2579890176
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
64(64u
74
128u
73
+ ··· 2725866u + 511569)
c
2
, c
5
u
74
8u
73
+ ··· 216611u + 52022
c
3
, c
9
27(27u
74
27u
73
+ ··· 170u + 61)
c
4
, c
10
27(27u
74
27u
73
+ ··· + 208u + 61)
c
6
64(64u
74
+ 128u
73
+ ··· + 1.69976 × 10
7
u + 3434427)
c
7
, c
11
, c
12
u
74
4u
73
+ ··· 255u + 62
c
8
u
74
+ 4u
73
+ ··· + 777216u + 285696
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
4096
· (4096y
74
135168y
73
+ ··· 338930953884y + 261702841761)
c
2
, c
5
y
74
42y
73
+ ··· + 4426533163y + 2706288484
c
3
, c
9
729(729y
74
+ 43011y
73
+ ··· + 40884y + 3721)
c
4
, c
10
729(729y
74
+ 28431y
73
+ ··· + 91668y + 3721)
c
6
4096
· (4096y
74
118784y
73
+ ··· 146351267872524y + 11795288818329)
c
7
, c
11
, c
12
y
74
+ 66y
73
+ ··· + 4787y + 3844
c
8
y
74
6y
73
+ ··· + 199138738176y + 81622204416
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.956855 + 0.323244I
a = 1.58587 1.46932I
b = 0.254516 + 0.831849I
2.11972 1.41825I 0
u = 0.956855 0.323244I
a = 1.58587 + 1.46932I
b = 0.254516 0.831849I
2.11972 + 1.41825I 0
u = 0.392834 + 0.936221I
a = 0.387039 + 1.005900I
b = 0.481180 0.404568I
1.76313 1.05065I 0
u = 0.392834 0.936221I
a = 0.387039 1.005900I
b = 0.481180 + 0.404568I
1.76313 + 1.05065I 0
u = 0.349178 + 0.959515I
a = 0.37166 1.52102I
b = 0.098677 + 1.279600I
10.04650 1.75472I 0
u = 0.349178 0.959515I
a = 0.37166 + 1.52102I
b = 0.098677 1.279600I
10.04650 + 1.75472I 0
u = 1.039710 + 0.243499I
a = 0.250091 0.954693I
b = 0.332462 0.537886I
0.82573 + 1.48951I 0
u = 1.039710 0.243499I
a = 0.250091 + 0.954693I
b = 0.332462 + 0.537886I
0.82573 1.48951I 0
u = 0.853927 + 0.261180I
a = 1.54106 + 2.19678I
b = 0.135462 0.805847I
2.19115 + 2.07020I 1.61287 + 2.28344I
u = 0.853927 0.261180I
a = 1.54106 2.19678I
b = 0.135462 + 0.805847I
2.19115 2.07020I 1.61287 2.28344I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.280504 + 0.832280I
a = 0.514278 0.776313I
b = 0.682562 + 0.166619I
4.77010 + 3.14743I 13.70473 3.39156I
u = 0.280504 0.832280I
a = 0.514278 + 0.776313I
b = 0.682562 0.166619I
4.77010 3.14743I 13.70473 + 3.39156I
u = 1.141320 + 0.128617I
a = 0.208428 + 0.721747I
b = 0.188973 + 0.757335I
2.36891 0.94403I 0
u = 1.141320 0.128617I
a = 0.208428 0.721747I
b = 0.188973 0.757335I
2.36891 + 0.94403I 0
u = 1.090800 + 0.370077I
a = 1.24076 + 0.89624I
b = 0.514177 0.873216I
0.85631 4.70807I 0
u = 1.090800 0.370077I
a = 1.24076 0.89624I
b = 0.514177 + 0.873216I
0.85631 + 4.70807I 0
u = 0.364310 + 0.761476I
a = 0.37557 + 1.45470I
b = 0.204448 1.123950I
3.44887 0.05340I 0.84658 + 2.45920I
u = 0.364310 0.761476I
a = 0.37557 1.45470I
b = 0.204448 + 1.123950I
3.44887 + 0.05340I 0.84658 2.45920I
u = 0.191646 + 0.815527I
a = 0.59145 + 1.38561I
b = 0.438339 1.274520I
7.47797 + 7.12202I 0.64413 4.63750I
u = 0.191646 0.815527I
a = 0.59145 1.38561I
b = 0.438339 + 1.274520I
7.47797 7.12202I 0.64413 + 4.63750I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.216626 + 0.805515I
a = 0.625128 + 0.613776I
b = 0.810740 0.031535I
0.12800 + 7.13488I 8.36711 5.76742I
u = 0.216626 0.805515I
a = 0.625128 0.613776I
b = 0.810740 + 0.031535I
0.12800 7.13488I 8.36711 + 5.76742I
u = 0.019667 + 1.177440I
a = 0.22341 + 1.62438I
b = 0.478486 1.241690I
3.47740 11.84660I 0
u = 0.019667 1.177440I
a = 0.22341 1.62438I
b = 0.478486 + 1.241690I
3.47740 + 11.84660I 0
u = 0.220938 + 0.770110I
a = 0.48419 1.33432I
b = 0.393339 + 1.167180I
2.19132 + 3.60535I 4.61334 4.48567I
u = 0.220938 0.770110I
a = 0.48419 + 1.33432I
b = 0.393339 1.167180I
2.19132 3.60535I 4.61334 + 4.48567I
u = 1.116020 + 0.448323I
a = 1.01041 + 1.01076I
b = 0.551215 1.123180I
1.08886 4.47773I 0
u = 1.116020 0.448323I
a = 1.01041 1.01076I
b = 0.551215 + 1.123180I
1.08886 + 4.47773I 0
u = 0.062871 + 1.206620I
a = 0.25251 1.53863I
b = 0.474532 + 1.147300I
1.94478 7.53049I 0
u = 0.062871 1.206620I
a = 0.25251 + 1.53863I
b = 0.474532 1.147300I
1.94478 + 7.53049I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.128650 + 0.526095I
a = 0.915681 1.068180I
b = 0.386717 + 1.327900I
7.55452 3.52374I 0
u = 1.128650 0.526095I
a = 0.915681 + 1.068180I
b = 0.386717 1.327900I
7.55452 + 3.52374I 0
u = 1.163190 + 0.452050I
a = 0.922106 0.983293I
b = 0.72737 + 1.24040I
0.68826 8.14483I 0
u = 1.163190 0.452050I
a = 0.922106 + 0.983293I
b = 0.72737 1.24040I
0.68826 + 8.14483I 0
u = 1.241260 + 0.141904I
a = 0.296574 0.534537I
b = 0.199203 0.922535I
2.60736 3.89508I 0
u = 1.241260 0.141904I
a = 0.296574 + 0.534537I
b = 0.199203 + 0.922535I
2.60736 + 3.89508I 0
u = 1.176930 + 0.463093I
a = 0.902180 + 1.007980I
b = 0.75759 1.34685I
4.46422 11.80280I 0
u = 1.176930 0.463093I
a = 0.902180 1.007980I
b = 0.75759 + 1.34685I
4.46422 + 11.80280I 0
u = 0.143657 + 1.278550I
a = 0.24276 + 1.40588I
b = 0.405638 1.018490I
0.08646 2.61917I 0
u = 0.143657 1.278550I
a = 0.24276 1.40588I
b = 0.405638 + 1.018490I
0.08646 + 2.61917I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.279230 + 0.234772I
a = 0.642765 0.276219I
b = 0.580762 0.124608I
0.24329 4.29843I 0
u = 1.279230 0.234772I
a = 0.642765 + 0.276219I
b = 0.580762 + 0.124608I
0.24329 + 4.29843I 0
u = 1.311670 + 0.369854I
a = 0.092483 0.294979I
b = 1.288210 0.094940I
4.77612 11.28530I 0
u = 1.311670 0.369854I
a = 0.092483 + 0.294979I
b = 1.288210 + 0.094940I
4.77612 + 11.28530I 0
u = 1.324880 + 0.364823I
a = 0.060136 + 0.199915I
b = 1.207270 + 0.187553I
9.63709 7.30911I 0
u = 1.324880 0.364823I
a = 0.060136 0.199915I
b = 1.207270 0.187553I
9.63709 + 7.30911I 0
u = 1.147840 + 0.773330I
a = 0.232086 + 1.254660I
b = 0.436399 0.614895I
2.33044 1.74529I 0
u = 1.147840 0.773330I
a = 0.232086 1.254660I
b = 0.436399 + 0.614895I
2.33044 + 1.74529I 0
u = 1.348690 + 0.354551I
a = 0.0290628 0.0464895I
b = 1.057490 0.302589I
7.05936 3.20770I 0
u = 1.348690 0.354551I
a = 0.0290628 + 0.0464895I
b = 1.057490 + 0.302589I
7.05936 + 3.20770I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.011995 + 0.576995I
a = 0.030862 + 0.532816I
b = 0.490221 0.663405I
3.82003 + 1.44123I 2.42911 4.15844I
u = 0.011995 0.576995I
a = 0.030862 0.532816I
b = 0.490221 + 0.663405I
3.82003 1.44123I 2.42911 + 4.15844I
u = 1.41066 + 0.30363I
a = 0.054757 + 0.271556I
b = 0.689456 0.390814I
6.22916 2.87126I 0
u = 1.41066 0.30363I
a = 0.054757 0.271556I
b = 0.689456 + 0.390814I
6.22916 + 2.87126I 0
u = 1.27089 + 0.74232I
a = 0.359829 1.266690I
b = 0.511628 + 0.814875I
7.10664 + 2.78984I 0
u = 1.27089 0.74232I
a = 0.359829 + 1.266690I
b = 0.511628 0.814875I
7.10664 2.78984I 0
u = 1.37156 + 0.56271I
a = 0.88834 + 1.25590I
b = 0.63563 1.37097I
0.7782 + 17.9224I 0
u = 1.37156 0.56271I
a = 0.88834 1.25590I
b = 0.63563 + 1.37097I
0.7782 17.9224I 0
u = 1.36978 + 0.57557I
a = 0.82799 1.26798I
b = 0.63976 + 1.31414I
6.1011 + 13.7362I 0
u = 1.36978 0.57557I
a = 0.82799 + 1.26798I
b = 0.63976 1.31414I
6.1011 13.7362I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37394 + 0.59852I
a = 0.73720 + 1.24846I
b = 0.607699 1.232080I
4.11337 + 9.11039I 0
u = 1.37394 0.59852I
a = 0.73720 1.24846I
b = 0.607699 + 1.232080I
4.11337 9.11039I 0
u = 1.34574 + 0.68489I
a = 0.502680 + 1.250270I
b = 0.549270 0.995359I
4.54187 + 7.58769I 0
u = 1.34574 0.68489I
a = 0.502680 1.250270I
b = 0.549270 + 0.995359I
4.54187 7.58769I 0
u = 1.51230 + 0.35184I
a = 0.130676 0.429581I
b = 0.537934 + 0.676409I
7.49574 + 1.47115I 0
u = 1.51230 0.35184I
a = 0.130676 + 0.429581I
b = 0.537934 0.676409I
7.49574 1.47115I 0
u = 1.44576 + 0.60502I
a = 0.683032 1.047140I
b = 0.417484 + 1.229110I
4.06899 + 8.19584I 0
u = 1.44576 0.60502I
a = 0.683032 + 1.047140I
b = 0.417484 1.229110I
4.06899 8.19584I 0
u = 0.274408 + 0.263174I
a = 0.697845 + 0.975456I
b = 0.135972 + 0.391654I
0.560147 + 0.862728I 9.95266 7.82530I
u = 0.274408 0.263174I
a = 0.697845 0.975456I
b = 0.135972 0.391654I
0.560147 0.862728I 9.95266 + 7.82530I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58981 + 0.44139I
a = 0.230102 + 0.549729I
b = 0.422808 0.863129I
1.65458 + 5.47067I 0
u = 1.58981 0.44139I
a = 0.230102 0.549729I
b = 0.422808 + 0.863129I
1.65458 5.47067I 0
u = 0.26331 + 1.73526I
a = 0.098629 1.231090I
b = 0.154343 + 0.965654I
8.73121 0.63574I 0
u = 0.26331 1.73526I
a = 0.098629 + 1.231090I
b = 0.154343 0.965654I
8.73121 + 0.63574I 0
12
II. I
u
2
= hu
3
+ b + 2u, 8u
3
3u
2
+ 5a 17u 7, u
4
+ 3u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
8
5
u
3
+
3
5
u
2
+
17
5
u +
7
5
u
3
2u
a
4
=
4
5
u
3
1
5
u
2
+
11
5
u
4
5
1
a
1
=
2
5
u
3
+
2
5
u
2
u +
6
5
1
5
u
3
1
5
u
2
+
1
5
u
4
5
a
10
=
3
5
u
3
+
3
5
u
2
+
7
5
u +
7
5
u
3
2u
a
7
=
2
5
u
3
+
2
5
u
2
u +
11
5
1
5
u
3
+
4
5
u
2
4
5
u
4
5
a
9
=
3
5
u
3
+
8
5
u
2
+
7
5
u +
12
5
u
3
3u
2
2u 2
a
8
=
1
5
u
3
+
8
5
u
2
+
3
5
u +
11
5
3
5
u
3
8
5
u
2
7
5
u
7
5
a
12
=
3
5
u
2
+
6
5
u +
8
5
3
5
u
3
2
5
u
2
3
5
u
3
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
5(5u
4
10u
3
+ 9u
2
4u + 1)
c
2
, c
5
, c
7
c
11
, c
12
u
4
+ 3u
2
+ 1
c
3
, c
4
, c
9
c
10
(u
2
+ 1)
2
c
6
5(5u
4
+ u
2
+ 2u + 1)
c
8
u
4
+ 7u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
25(25y
4
10y
3
+ 11y
2
+ 2y + 1)
c
2
, c
5
, c
7
c
11
, c
12
(y
2
+ 3y + 1)
2
c
3
, c
4
, c
9
c
10
(y + 1)
4
c
6
25(25y
4
+ 10y
3
+ 11y
2
2y + 1)
c
8
(y
2
+ 7y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034I
a = 1.17082 + 1.72361I
b = 1.000000I
0.986960 4.00000
u = 0.618034I
a = 1.17082 1.72361I
b = 1.000000I
0.986960 4.00000
u = 1.61803I
a = 0.170820 1.276390I
b = 1.000000I
8.88264 4.00000
u = 1.61803I
a = 0.170820 + 1.276390I
b = 1.000000I
8.88264 4.00000
16
III. I
u
3
= ha
2
+ b a, a
3
2a
2
+ a + 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
3
=
1
0
a
11
=
a
a
2
+ a
a
4
=
a
2
a
a
a
1
=
a
a
2
+ a
a
10
=
a
2
+ 2a
a
2
+ a
a
7
=
a
a
2
a
a
9
=
a
a
2
+ a
a
8
=
a
a
2
+ a
a
12
=
a
a
2
+ a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
9
, c
10
u
3
+ u + 1
c
2
, c
5
(u + 1)
3
c
6
u
3
+ 2u
2
+ u 1
c
7
, c
8
, c
11
c
12
u
3
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
9
, c
10
y
3
+ 2y
2
+ y 1
c
2
, c
5
(y 1)
3
c
6
y
3
2y
2
+ 5y 1
c
7
, c
8
, c
11
c
12
y
3
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.23279 + 0.79255I
b = 0.341164 1.161540I
1.64493 6.00000
u = 1.00000
a = 1.23279 0.79255I
b = 0.341164 + 1.161540I
1.64493 6.00000
u = 1.00000
a = 0.465571
b = 0.682328
1.64493 6.00000
20
IV. I
u
4
= hb
6
a
3
3b
5
a
2
+ · · · a
2
+ 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
3
=
1
0
a
11
=
a
b
a
4
=
ba + 1
b
2
a
1
=
b
2
a
2
+ 2ba 1
b
3
a + b
2
1
a
10
=
b + a
b
a
7
=
ba a
2
+ 1
ba + 1
a
9
=
a
b
a
8
=
b
4
a
3
+ 3b
3
a
2
a
3
b
2
3b
2
a + 2a
2
b + b
b
5
a
2
+ 2b
4
a b
3
a
2
b
3
+ 2b a
a
12
=
b
5
a
3
b
4
a
4
+ 3b
4
a
2
2a
4
b
2
3b
3
a + 2b
2
a
2
+ a
3
b a
4
+ b
2
+ a
2
1
b
5
a
3
+ 3b
4
a
2
2b
3
a
3
4b
3
a + 4b
2
a
2
a
3
b + 2b
2
2ba + a
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
a 4b + 4a 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
21
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
4
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
1.37919 2.82812I 15.0195 + 0.I
22
V. I
v
1
= ha, b
6
b
5
+ 2b
4
2b
3
+ 2b
2
2b + 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
3
=
1
0
a
11
=
0
b
a
4
=
1
b
2
a
1
=
b
2
+ 1
b
4
a
10
=
b
b
a
7
=
b
2
+ 1
b
2
a
9
=
0
b
a
8
=
b
5
+ 2b
3
+ b
1
a
12
=
2b
5
+ b
4
4b
3
+ 3b
2
3b + 3
b
5
2b
3
+ b
2
b + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
3
+ 4b 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
2
, c
5
u
6
c
3
, c
4
, c
6
c
9
, c
10
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
7
, c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
2
c
8
(u
3
u
2
+ 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
2
, c
5
y
6
c
3
, c
4
, c
6
c
9
, c
10
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
7
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
8
(y
3
y
2
+ 2y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.498832 + 1.001300I
3.02413 2.82812I 2.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.498832 1.001300I
3.02413 + 2.82812I 2.49024 2.97945I
v = 1.00000
a = 0
b = 0.284920 + 1.115140I
1.11345 9.01951 + 0.I
v = 1.00000
a = 0
b = 0.284920 1.115140I
1.11345 9.01951 + 0.I
v = 1.00000
a = 0
b = 0.713912 + 0.305839I
3.02413 2.82812I 2.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.713912 0.305839I
3.02413 + 2.82812I 2.49024 2.97945I
26
VI. I
v
2
= ha, b
3
+ b
2
+ 2b + 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
3
=
1
0
a
11
=
0
b
a
4
=
1
b
2
a
1
=
b
2
+ 1
b
2
b 1
a
10
=
b
b
a
7
=
b
2
+ 1
b
2
a
9
=
0
b
a
8
=
1
2b
2
+ 2b
a
12
=
b
3b 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
4b 10
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ 3u
2
+ 2u 1
c
2
, c
5
u
3
c
3
, c
4
, c
6
c
7
, c
9
, c
10
c
11
, c
12
u
3
+ u
2
+ 2u + 1
c
8
u
3
u
2
+ 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
5y
2
+ 10y 1
c
2
, c
5
y
3
c
3
, c
4
, c
6
c
7
, c
9
, c
10
c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
8
y
3
y
2
+ 2y 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.215080 + 1.307140I
3.02413 + 2.82812I 2.49024 2.97945I
v = 1.00000
a = 0
b = 0.215080 1.307140I
3.02413 2.82812I 2.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.569840
1.11345 9.01950
30
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
320(u
3
+ u + 1)(u
3
+ 3u
2
+ 2u 1)(5u
4
10u
3
+ 9u
2
4u + 1)
· (u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (64u
74
128u
73
+ ··· 2725866u + 511569)
c
2
, c
5
u
9
(u + 1)
3
(u
4
+ 3u
2
+ 1)(u
74
8u
73
+ ··· 216611u + 52022)
c
3
, c
9
27(u
2
+ 1)
2
(u
3
+ u + 1)(u
3
+ u
2
+ 2u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)(27u
74
27u
73
+ ··· 170u + 61)
c
4
, c
10
27(u
2
+ 1)
2
(u
3
+ u + 1)(u
3
+ u
2
+ 2u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)(27u
74
27u
73
+ ··· + 208u + 61)
c
6
320(u
3
+ u
2
+ 2u + 1)(u
3
+ 2u
2
+ u 1)(5u
4
+ u
2
+ 2u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (64u
74
+ 128u
73
+ ··· + 16997580u + 3434427)
c
7
, c
11
, c
12
u
3
(u
3
+ u
2
+ 2u + 1)
3
(u
4
+ 3u
2
+ 1)(u
74
4u
73
+ ··· 255u + 62)
c
8
u
3
(u
3
u
2
+ 1)
3
(u
4
+ 7u
2
+ 1)(u
74
+ 4u
73
+ ··· + 777216u + 285696)
31
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
102400(y
3
5y
2
+ 10y 1)(y
3
+ 2y
2
+ y 1)
· (25y
4
10y
3
+ 11y
2
+ 2y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (4096y
74
135168y
73
+ ··· 338930953884y + 261702841761)
c
2
, c
5
y
9
(y 1)
3
(y
2
+ 3y + 1)
2
· (y
74
42y
73
+ ··· + 4426533163y + 2706288484)
c
3
, c
9
729(y + 1)
4
(y
3
+ 2y
2
+ y 1)(y
3
+ 3y
2
+ 2y 1)
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)(729y
74
+ 43011y
73
+ ··· + 40884y + 3721)
c
4
, c
10
729(y + 1)
4
(y
3
+ 2y
2
+ y 1)(y
3
+ 3y
2
+ 2y 1)
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)(729y
74
+ 28431y
73
+ ··· + 91668y + 3721)
c
6
102400(y
3
2y
2
+ 5y 1)(y
3
+ 3y
2
+ 2y 1)
· (25y
4
+ 10y
3
+ 11y
2
2y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (4096y
74
118784y
73
+ ··· 146351267872524y + 11795288818329)
c
7
, c
11
, c
12
y
3
(y
2
+ 3y + 1)
2
(y
3
+ 3y
2
+ 2y 1)
3
· (y
74
+ 66y
73
+ ··· + 4787y + 3844)
c
8
y
3
(y
2
+ 7y + 1)
2
(y
3
y
2
+ 2y 1)
3
· (y
74
6y
73
+ ··· + 199138738176y + 81622204416)
32