10
88
(K10a
11
)
A knot diagram
1
Linearized knot diagam
5 1 10 2 9 3 4 6 8 7
Solving Sequence
5,9 2,6
1 4 8 10 3 7
c
5
c
1
c
4
c
8
c
9
c
3
c
7
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.78927 × 10
31
u
49
+ 8.64865 × 10
31
u
48
+ ··· + 2.44356 × 10
32
b + 3.07584 × 10
32
,
1.85309 × 10
32
u
49
+ 2.34614 × 10
31
u
48
+ ··· + 2.44356 × 10
32
a 4.39857 × 10
31
, u
50
u
49
+ ··· 5u + 1i
* 1 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.79×10
31
u
49
+8.65×10
31
u
48
+· · ·+2.44×10
32
b+3.08×10
32
, 1.85×
10
32
u
49
+2.35×10
31
u
48
+· · ·+2.44×10
32
a4.40×10
31
, u
50
u
49
+· · ·5u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
2
=
0.758359u
49
0.0960131u
48
+ ··· + 4.45061u + 0.180007
0.195996u
49
0.353937u
48
+ ··· + 6.62447u 1.25875
a
6
=
1
u
2
a
1
=
0.562363u
49
+ 0.257923u
48
+ ··· 2.17386u + 1.43876
0.195996u
49
0.353937u
48
+ ··· + 6.62447u 1.25875
a
4
=
0.884162u
49
+ 0.510722u
48
+ ··· + 10.7623u 1.94330
0.177826u
49
0.322317u
48
+ ··· + 6.18097u 2.09684
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
3
=
1.04226u
49
+ 0.469203u
48
+ ··· + 10.2187u 1.83350
0.203367u
49
0.392648u
48
+ ··· + 6.44615u 2.34009
a
7
=
0.870023u
49
+ 1.11164u
48
+ ··· 2.30734u + 2.02319
0.169826u
49
0.715422u
48
+ ··· + 2.88924u + 0.199819
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.37628u
49
0.986125u
48
+ ··· 35.4700u + 13.0744
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
50
+ u
49
+ ··· + 5u + 1
c
2
u
50
+ 21u
49
+ ··· + 5u + 1
c
3
u
50
+ 5u
49
+ ··· + u + 1
c
5
, c
8
u
50
u
49
+ ··· 5u + 1
c
6
u
50
+ u
49
+ ··· 17u + 1
c
7
u
50
u
49
+ ··· + 17u + 1
c
9
u
50
21u
49
+ ··· 5u + 1
c
10
u
50
5u
49
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
50
+ 21y
49
+ ··· + 5y + 1
c
2
, c
9
y
50
+ 17y
49
+ ··· 71y + 1
c
3
, c
10
y
50
+ 5y
49
+ ··· + 5y + 1
c
6
, c
7
y
50
+ 49y
49
+ ··· 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.436223 + 0.912127I
a = 0.05994 + 2.46842I
b = 0.513623 0.775619I
0.465700 + 0.257544I 10.73692 + 5.77650I
u = 0.436223 0.912127I
a = 0.05994 2.46842I
b = 0.513623 + 0.775619I
0.465700 0.257544I 10.73692 5.77650I
u = 0.948189 + 0.263019I
a = 0.47046 + 1.33916I
b = 0.390240 + 0.977451I
3.46714 1.26448I 10.24310 + 1.49533I
u = 0.948189 0.263019I
a = 0.47046 1.33916I
b = 0.390240 0.977451I
3.46714 + 1.26448I 10.24310 1.49533I
u = 0.751604 + 0.620367I
a = 0.76094 + 2.10184I
b = 0.101263 + 1.224450I
5.61738 + 1.76997I 6.58185 1.55968I
u = 0.751604 0.620367I
a = 0.76094 2.10184I
b = 0.101263 1.224450I
5.61738 1.76997I 6.58185 + 1.55968I
u = 0.926795 + 0.461408I
a = 0.06013 1.60838I
b = 0.629982 1.117780I
2.06994 + 9.79621I 2.50765 6.28548I
u = 0.926795 0.461408I
a = 0.06013 + 1.60838I
b = 0.629982 + 1.117780I
2.06994 9.79621I 2.50765 + 6.28548I
u = 0.315698 + 0.896805I
a = 0.094858 0.349071I
b = 0.802649 + 0.956850I
2.17019 + 1.69704I 6.69422 3.84304I
u = 0.315698 0.896805I
a = 0.094858 + 0.349071I
b = 0.802649 0.956850I
2.17019 1.69704I 6.69422 + 3.84304I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.390240 + 0.977451I
a = 0.218149 0.845172I
b = 0.948189 + 0.263019I
3.46714 1.26448I 10.24310 + 1.49533I
u = 0.390240 0.977451I
a = 0.218149 + 0.845172I
b = 0.948189 0.263019I
3.46714 + 1.26448I 10.24310 1.49533I
u = 0.520399 + 0.919399I
a = 3.68586 + 2.69325I
b = 0.520399 + 0.919399I
4.46279I 0. + 17.3614I
u = 0.520399 0.919399I
a = 3.68586 2.69325I
b = 0.520399 0.919399I
4.46279I 0. 17.3614I
u = 0.836943 + 0.423224I
a = 0.232872 + 0.578642I
b = 0.836943 + 0.423224I
4.34036I 0. 2.49570I
u = 0.836943 0.423224I
a = 0.232872 0.578642I
b = 0.836943 0.423224I
4.34036I 0. + 2.49570I
u = 0.513623 + 0.775619I
a = 0.12952 3.57817I
b = 0.436223 0.912127I
0.465700 0.257544I 10.73692 5.77650I
u = 0.513623 0.775619I
a = 0.12952 + 3.57817I
b = 0.436223 + 0.912127I
0.465700 + 0.257544I 10.73692 + 5.77650I
u = 0.428462 + 0.986061I
a = 0.384178 0.243345I
b = 0.151838 + 0.411336I
0.42985 + 2.78493I 1.80718 4.91633I
u = 0.428462 0.986061I
a = 0.384178 + 0.243345I
b = 0.151838 0.411336I
0.42985 2.78493I 1.80718 + 4.91633I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.454209 + 0.992717I
a = 0.797222 0.884708I
b = 0.963579 0.664758I
3.06399 4.68595I 8.49449 + 8.00357I
u = 0.454209 0.992717I
a = 0.797222 + 0.884708I
b = 0.963579 + 0.664758I
3.06399 + 4.68595I 8.49449 8.00357I
u = 0.534615 + 0.993631I
a = 1.49902 1.80771I
b = 0.669156 1.208830I
0.67245 7.17988I 2.47305 + 11.09561I
u = 0.534615 0.993631I
a = 1.49902 + 1.80771I
b = 0.669156 + 1.208830I
0.67245 + 7.17988I 2.47305 11.09561I
u = 0.634283 + 0.564662I
a = 0.415195 + 0.219909I
b = 0.371567 + 0.059094I
1.12648 + 1.44226I 2.47190 3.48786I
u = 0.634283 0.564662I
a = 0.415195 0.219909I
b = 0.371567 0.059094I
1.12648 1.44226I 2.47190 + 3.48786I
u = 0.963579 + 0.664758I
a = 0.48756 1.58137I
b = 0.454209 0.992717I
3.06399 + 4.68595I 8.49449 8.00357I
u = 0.963579 0.664758I
a = 0.48756 + 1.58137I
b = 0.454209 + 0.992717I
3.06399 4.68595I 8.49449 + 8.00357I
u = 0.646221 + 1.007930I
a = 0.91233 1.58912I
b = 0.016221 1.300020I
4.44668 7.08217I 4.03427 + 7.44469I
u = 0.646221 1.007930I
a = 0.91233 + 1.58912I
b = 0.016221 + 1.300020I
4.44668 + 7.08217I 4.03427 7.44469I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.101263 + 1.224450I
a = 0.961820 + 0.164264I
b = 0.751604 + 0.620367I
5.61738 + 1.76997I 6.58185 1.55968I
u = 0.101263 1.224450I
a = 0.961820 0.164264I
b = 0.751604 0.620367I
5.61738 1.76997I 6.58185 + 1.55968I
u = 0.802649 + 0.956850I
a = 0.154615 + 1.120140I
b = 0.315698 + 0.896805I
2.17019 + 1.69704I 6.69422 + 0.I
u = 0.802649 0.956850I
a = 0.154615 1.120140I
b = 0.315698 0.896805I
2.17019 1.69704I 6.69422 + 0.I
u = 0.518931 + 1.139540I
a = 0.281111 0.250166I
b = 0.441150 + 0.556001I
0.60255 + 2.94954I 0. 5.37680I
u = 0.518931 1.139540I
a = 0.281111 + 0.250166I
b = 0.441150 0.556001I
0.60255 2.94954I 0. + 5.37680I
u = 0.629982 + 1.117780I
a = 0.238857 + 0.640097I
b = 0.926795 0.461408I
2.06994 9.79621I 0
u = 0.629982 1.117780I
a = 0.238857 0.640097I
b = 0.926795 + 0.461408I
2.06994 + 9.79621I 0
u = 0.441150 + 0.556001I
a = 0.89388 + 1.68739I
b = 0.518931 + 1.139540I
0.60255 + 2.94954I 1.13612 5.37680I
u = 0.441150 0.556001I
a = 0.89388 1.68739I
b = 0.518931 1.139540I
0.60255 2.94954I 1.13612 + 5.37680I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.016221 + 1.300020I
a = 0.841104 0.210805I
b = 0.646221 1.007930I
4.44668 + 7.08217I 0. 7.44469I
u = 0.016221 1.300020I
a = 0.841104 + 0.210805I
b = 0.646221 + 1.007930I
4.44668 7.08217I 0. + 7.44469I
u = 0.670825 + 1.138630I
a = 1.49989 + 1.65059I
b = 0.670825 + 1.138630I
15.6466I 0
u = 0.670825 1.138630I
a = 1.49989 1.65059I
b = 0.670825 1.138630I
15.6466I 0
u = 0.669156 + 1.208830I
a = 1.36920 1.22455I
b = 0.534615 0.993631I
0.67245 + 7.17988I 0
u = 0.669156 1.208830I
a = 1.36920 + 1.22455I
b = 0.534615 + 0.993631I
0.67245 7.17988I 0
u = 0.151838 + 0.411336I
a = 1.52157 + 0.76573I
b = 0.428462 + 0.986061I
0.42985 + 2.78493I 1.80718 4.91633I
u = 0.151838 0.411336I
a = 1.52157 0.76573I
b = 0.428462 0.986061I
0.42985 2.78493I 1.80718 + 4.91633I
u = 0.371567 + 0.059094I
a = 1.69115 + 0.65214I
b = 0.634283 + 0.564662I
1.12648 + 1.44226I 2.47190 3.48786I
u = 0.371567 0.059094I
a = 1.69115 0.65214I
b = 0.634283 0.564662I
1.12648 1.44226I 2.47190 + 3.48786I
9
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
50
+ u
49
+ ··· + 5u + 1
c
2
u
50
+ 21u
49
+ ··· + 5u + 1
c
3
u
50
+ 5u
49
+ ··· + u + 1
c
5
, c
8
u
50
u
49
+ ··· 5u + 1
c
6
u
50
+ u
49
+ ··· 17u + 1
c
7
u
50
u
49
+ ··· + 17u + 1
c
9
u
50
21u
49
+ ··· 5u + 1
c
10
u
50
5u
49
+ ··· u + 1
10
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
50
+ 21y
49
+ ··· + 5y + 1
c
2
, c
9
y
50
+ 17y
49
+ ··· 71y + 1
c
3
, c
10
y
50
+ 5y
49
+ ··· + 5y + 1
c
6
, c
7
y
50
+ 49y
49
+ ··· 11y + 1
11