12a
0938
(K12a
0938
)
A knot diagram
1
Linearized knot diagam
4 6 9 1 2 10 11 12 3 8 7 5
Solving Sequence
5,12
1 4 2
6,7
11 8 9 3 10
c
12
c
4
c
1
c
5
c
11
c
7
c
8
c
3
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
12
u
11
5u
10
4u
9
9u
8
6u
7
5u
6
3u
5
+ 3u
4
+ u
3
+ 3u
2
+ a + u,
u
15
+ u
14
+ 7u
13
+ 6u
12
+ 19u
11
+ 14u
10
+ 22u
9
+ 14u
8
+ 3u
7
+ 2u
6
14u
5
6u
4
6u
3
4u
2
+ 3u 1i
I
u
2
= hu
59
+ 2u
58
+ ··· + 2b 2, u
59
+ 3u
58
+ ··· + 2a 4, u
60
+ 3u
59
+ ··· 8u 1i
I
u
3
= hb + u, a u + 2, u
3
u
2
+ 2u 1i
I
u
4
= h−u
2
a u
2
+ b a 1, u
2
a + a
2
+ u
2
+ 2a + 2, u
3
u
2
+ 2u 1i
* 4 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
12
u
11
+ · · · + a + u, u
15
+ u
14
+ · · · + 3u 1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
u
3
+ u
a
2
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
7
=
u
12
+ u
11
+ 5u
10
+ 4u
9
+ 9u
8
+ 6u
7
+ 5u
6
+ 3u
5
3u
4
u
3
3u
2
u
u
a
11
=
u
13
u
12
+ ··· + u
2
+ 1
u
2
a
8
=
u
14
+ u
13
+ ··· 3u
2
2u
u
3
+ u
a
9
=
u
14
+ u
13
+ ··· 3u
2
3u
u
3
+ u
a
3
=
u
8
3u
6
3u
4
+ 1
u
10
4u
8
5u
6
+ 3u
2
a
10
=
u
9
u
8
4u
7
3u
6
5u
5
3u
4
u
2
+ 3u
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
14
4u
13
26u
12
26u
11
68u
10
66u
9
78u
8
74u
7
16u
6
16u
5
+ 38u
4
+ 34u
3
+ 16u
2
+ 24u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
u
15
u
14
+ ··· + 3u + 1
c
2
, c
5
, c
6
c
8
u
15
+ u
14
+ ··· + u + 1
c
3
, c
9
u
15
7u
14
+ ··· + 32u 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
y
15
+ 13y
14
+ ··· + y 1
c
2
, c
5
, c
6
c
8
y
15
15y
14
+ ··· + y 1
c
3
, c
9
y
15
+ 7y
14
+ ··· 320y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.864712 + 0.110290I
a = 1.86907 0.45625I
b = 0.864712 + 0.110290I
11.11480 + 6.35352I 15.5001 4.2472I
u = 0.864712 0.110290I
a = 1.86907 + 0.45625I
b = 0.864712 0.110290I
11.11480 6.35352I 15.5001 + 4.2472I
u = 0.105102 + 1.139200I
a = 0.439069 + 0.083556I
b = 0.105102 + 1.139200I
4.69451 2.19799I 5.25826 + 3.25670I
u = 0.105102 1.139200I
a = 0.439069 0.083556I
b = 0.105102 1.139200I
4.69451 + 2.19799I 5.25826 3.25670I
u = 0.811305
a = 2.34658
b = 0.811305
6.37976 14.9760
u = 0.423940 + 1.181130I
a = 1.389210 + 0.220558I
b = 0.423940 + 1.181130I
4.55475 + 2.89595I 9.71000 3.23135I
u = 0.423940 1.181130I
a = 1.389210 0.220558I
b = 0.423940 1.181130I
4.55475 2.89595I 9.71000 + 3.23135I
u = 0.360108 + 1.291100I
a = 2.54683 + 0.20383I
b = 0.360108 + 1.291100I
1.68042 8.43141I 6.38008 + 6.14293I
u = 0.360108 1.291100I
a = 2.54683 0.20383I
b = 0.360108 1.291100I
1.68042 + 8.43141I 6.38008 6.14293I
u = 0.035636 + 1.359960I
a = 0.27580 2.64222I
b = 0.035636 + 1.359960I
9.79675 2.45365I 1.09794 + 3.27080I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.035636 1.359960I
a = 0.27580 + 2.64222I
b = 0.035636 1.359960I
9.79675 + 2.45365I 1.09794 3.27080I
u = 0.378630 + 1.355350I
a = 2.48655 0.69111I
b = 0.378630 + 1.355350I
1.8779 + 15.2909I 7.04558 8.68185I
u = 0.378630 1.355350I
a = 2.48655 + 0.69111I
b = 0.378630 1.355350I
1.8779 15.2909I 7.04558 + 8.68185I
u = 0.260784 + 0.226947I
a = 0.260409 0.646690I
b = 0.260784 + 0.226947I
0.369166 0.786960I 8.71574 + 8.77230I
u = 0.260784 0.226947I
a = 0.260409 + 0.646690I
b = 0.260784 0.226947I
0.369166 + 0.786960I 8.71574 8.77230I
6
II.
I
u
2
= hu
59
+2u
58
+· · ·+2b2, u
59
+3u
58
+· · ·+2a4, u
60
+3u
59
+· · ·8u1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
u
3
+ u
a
2
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
7
=
1
2
u
59
3
2
u
58
+ ··· +
1
2
u + 2
1
2
u
59
u
58
+ ··· + 6u + 1
a
11
=
4u
59
+
21
2
u
58
+ ···
67
2
u
9
2
u
59
u
58
+ ··· 13u
5
2
a
8
=
5
2
u
59
8u
58
+ ··· + 57u + 14
3
2
u
59
4u
58
+ ··· + 20u +
9
2
a
9
=
u
59
4u
58
+ ··· + 37u +
19
2
3
2
u
59
4u
58
+ ··· + 20u +
9
2
a
3
=
u
8
3u
6
3u
4
+ 1
u
10
4u
8
5u
6
+ 3u
2
a
10
=
6u
59
+ 14u
58
+ ··· 66u
29
2
7
2
u
59
+ 9u
58
+ ··· 33u
13
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
2
u
59
17u
58
+ ··· 3u
19
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
u
60
3u
59
+ ··· + 8u 1
c
2
, c
5
, c
6
c
8
u
60
+ 3u
59
+ ··· + 520u 137
c
3
, c
9
(u
30
+ 3u
29
+ ··· 12u 8)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
y
60
+ 49y
59
+ ··· 28y + 1
c
2
, c
5
, c
6
c
8
y
60
43y
59
+ ··· 297252y + 18769
c
3
, c
9
(y
30
+ 21y
29
+ ··· 208y + 64)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866352 + 0.087987I
a = 0.71052 1.48467I
b = 0.427481 1.154580I
7.91257 + 1.72426I 12.74360 0.42116I
u = 0.866352 0.087987I
a = 0.71052 + 1.48467I
b = 0.427481 + 1.154580I
7.91257 1.72426I 12.74360 + 0.42116I
u = 0.859274 + 0.126720I
a = 2.20772 + 0.88605I
b = 0.384752 + 1.346570I
6.53967 + 10.84120I 11.31201 6.59674I
u = 0.859274 0.126720I
a = 2.20772 0.88605I
b = 0.384752 1.346570I
6.53967 10.84120I 11.31201 + 6.59674I
u = 0.811961 + 0.030859I
a = 1.90730 + 1.95853I
b = 0.359515 + 1.269110I
2.44025 4.21285I 10.79867 + 3.36820I
u = 0.811961 0.030859I
a = 1.90730 1.95853I
b = 0.359515 1.269110I
2.44025 + 4.21285I 10.79867 3.36820I
u = 0.812151 + 0.025025I
a = 1.154180 0.235909I
b = 0.546996 0.494154I
5.29824 + 1.96304I 14.0240 3.7195I
u = 0.812151 0.025025I
a = 1.154180 + 0.235909I
b = 0.546996 + 0.494154I
5.29824 1.96304I 14.0240 + 3.7195I
u = 0.426044 + 1.131210I
a = 0.727875 0.277369I
b = 0.389512 1.332390I
3.46235 6.23114I 0
u = 0.426044 1.131210I
a = 0.727875 + 0.277369I
b = 0.389512 + 1.332390I
3.46235 + 6.23114I 0
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.770784 + 0.061460I
a = 1.079330 0.274511I
b = 0.14357 1.41247I
0.79615 + 4.22762I 10.05667 4.58015I
u = 0.770784 0.061460I
a = 1.079330 + 0.274511I
b = 0.14357 + 1.41247I
0.79615 4.22762I 10.05667 + 4.58015I
u = 0.427481 + 1.154580I
a = 1.142560 0.223262I
b = 0.866352 0.087987I
7.91257 1.72426I 0
u = 0.427481 1.154580I
a = 1.142560 + 0.223262I
b = 0.866352 + 0.087987I
7.91257 + 1.72426I 0
u = 0.027147 + 1.235000I
a = 0.583477 + 0.915228I
b = 0.668715 0.159496I
2.08860 + 0.78309I 0
u = 0.027147 1.235000I
a = 0.583477 0.915228I
b = 0.668715 + 0.159496I
2.08860 0.78309I 0
u = 0.522307 + 0.542494I
a = 1.97898 + 0.17315I
b = 0.361715 1.287380I
1.20998 6.18837I 9.36869 + 6.76347I
u = 0.522307 0.542494I
a = 1.97898 0.17315I
b = 0.361715 + 1.287380I
1.20998 + 6.18837I 9.36869 6.76347I
u = 0.546996 + 0.494154I
a = 1.138140 + 0.625120I
b = 0.812151 0.025025I
5.29824 1.96304I 14.0240 + 3.7195I
u = 0.546996 0.494154I
a = 1.138140 0.625120I
b = 0.812151 + 0.025025I
5.29824 + 1.96304I 14.0240 3.7195I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.579343 + 0.445290I
a = 0.104195 + 0.571803I
b = 0.357093 + 1.248530I
1.51678 + 2.24498I 10.41829 + 0.03554I
u = 0.579343 0.445290I
a = 0.104195 0.571803I
b = 0.357093 1.248530I
1.51678 2.24498I 10.41829 0.03554I
u = 0.312553 + 1.230880I
a = 0.243366 1.021580I
b = 0.17696 + 1.40609I
4.37363 0.32326I 0
u = 0.312553 1.230880I
a = 0.243366 + 1.021580I
b = 0.17696 1.40609I
4.37363 + 0.32326I 0
u = 0.058694 + 1.275980I
a = 2.05305 + 1.65274I
b = 0.273445 1.345740I
6.82843 + 4.21576I 0
u = 0.058694 1.275980I
a = 2.05305 1.65274I
b = 0.273445 + 1.345740I
6.82843 4.21576I 0
u = 0.358239 + 1.242060I
a = 0.325203 1.127520I
b = 0.358239 1.242060I
1.29928 0
u = 0.358239 1.242060I
a = 0.325203 + 1.127520I
b = 0.358239 + 1.242060I
1.29928 0
u = 0.088419 + 1.291380I
a = 0.283489 0.576292I
b = 0.071835 + 0.504277I
4.18867 2.01435I 0
u = 0.088419 1.291380I
a = 0.283489 + 0.576292I
b = 0.071835 0.504277I
4.18867 + 2.01435I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.357093 + 1.248530I
a = 0.277613 + 0.172882I
b = 0.579343 + 0.445290I
1.51678 + 2.24498I 0
u = 0.357093 1.248530I
a = 0.277613 0.172882I
b = 0.579343 0.445290I
1.51678 2.24498I 0
u = 0.243342 + 1.288680I
a = 0.821950 + 0.307839I
b = 0.276488 0.137898I
2.60325 3.14855I 0
u = 0.243342 1.288680I
a = 0.821950 0.307839I
b = 0.276488 + 0.137898I
2.60325 + 3.14855I 0
u = 0.668715 + 0.159496I
a = 1.85649 0.59763I
b = 0.027147 1.235000I
2.08860 0.78309I 8.05433 + 0.68374I
u = 0.668715 0.159496I
a = 1.85649 + 0.59763I
b = 0.027147 + 1.235000I
2.08860 + 0.78309I 8.05433 0.68374I
u = 0.359515 + 1.269110I
a = 1.51041 0.74478I
b = 0.811961 + 0.030859I
2.44025 4.21285I 0
u = 0.359515 1.269110I
a = 1.51041 + 0.74478I
b = 0.811961 0.030859I
2.44025 + 4.21285I 0
u = 0.361715 + 1.287380I
a = 0.935893 + 0.612906I
b = 0.522307 0.542494I
1.20998 + 6.18837I 0
u = 0.361715 1.287380I
a = 0.935893 0.612906I
b = 0.522307 + 0.542494I
1.20998 6.18837I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.336582 + 1.312290I
a = 1.70878 + 1.42762I
b = 0.12149 1.42413I
5.10162 + 8.23172I 0
u = 0.336582 1.312290I
a = 1.70878 1.42762I
b = 0.12149 + 1.42413I
5.10162 8.23172I 0
u = 0.628824
a = 1.09503
b = 0.227844
1.43510 5.45290
u = 0.273445 + 1.345740I
a = 2.12347 + 1.22513I
b = 0.058694 1.275980I
6.82843 4.21576I 0
u = 0.273445 1.345740I
a = 2.12347 1.22513I
b = 0.058694 + 1.275980I
6.82843 + 4.21576I 0
u = 0.389512 + 1.332390I
a = 0.361503 0.573917I
b = 0.426044 1.131210I
3.46235 + 6.23114I 0
u = 0.389512 1.332390I
a = 0.361503 + 0.573917I
b = 0.426044 + 1.131210I
3.46235 6.23114I 0
u = 0.384752 + 1.346570I
a = 1.06494 1.02113I
b = 0.859274 + 0.126720I
6.53967 + 10.84120I 0
u = 0.384752 1.346570I
a = 1.06494 + 1.02113I
b = 0.859274 0.126720I
6.53967 10.84120I 0
u = 0.17696 + 1.40609I
a = 0.131316 0.931855I
b = 0.312553 + 1.230880I
4.37363 0.32326I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.17696 1.40609I
a = 0.131316 + 0.931855I
b = 0.312553 1.230880I
4.37363 + 0.32326I 0
u = 0.14357 + 1.41247I
a = 0.252805 + 0.551347I
b = 0.770784 0.061460I
0.79615 4.22762I 0
u = 0.14357 1.41247I
a = 0.252805 0.551347I
b = 0.770784 + 0.061460I
0.79615 + 4.22762I 0
u = 0.12149 + 1.42413I
a = 1.37385 + 1.60217I
b = 0.336582 1.312290I
5.10162 8.23172I 0
u = 0.12149 1.42413I
a = 1.37385 1.60217I
b = 0.336582 + 1.312290I
5.10162 + 8.23172I 0
u = 0.071835 + 0.504277I
a = 0.61146 1.51320I
b = 0.088419 + 1.291380I
4.18867 2.01435I 2.24660 + 4.20023I
u = 0.071835 0.504277I
a = 0.61146 + 1.51320I
b = 0.088419 1.291380I
4.18867 + 2.01435I 2.24660 4.20023I
u = 0.276488 + 0.137898I
a = 3.15020 1.98893I
b = 0.243342 1.288680I
2.60325 + 3.14855I 0.03228 4.59727I
u = 0.276488 0.137898I
a = 3.15020 + 1.98893I
b = 0.243342 + 1.288680I
2.60325 3.14855I 0.03228 + 4.59727I
u = 0.227844
a = 3.02215
b = 0.628824
1.43510 5.45290
15
III. I
u
3
= hb + u, a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
u
2
u + 1
a
2
=
u
2
+ 1
u
2
u + 1
a
6
=
1
0
a
7
=
u 2
u
a
11
=
u
2
2u + 1
u
2
a
8
=
u
2
1
u
2
+ u 1
a
9
=
u
u
2
+ u 1
a
3
=
u
u
2
u + 1
a
10
=
u
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 8u 20
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
12
u
3
u
2
+ 2u 1
c
2
, c
6
, c
8
u
3
+ u
2
1
c
3
, c
9
u
3
c
4
, c
10
, c
11
u
3
+ u
2
+ 2u + 1
c
5
u
3
u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
6
c
8
y
3
y
2
+ 2y 1
c
3
, c
9
y
3
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.78492 + 1.30714I
b = 0.215080 1.307140I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.215080 1.307140I
a = 1.78492 1.30714I
b = 0.215080 + 1.307140I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.569840
a = 1.43016
b = 0.569840
2.22691 18.0390
19
IV. I
u
4
= h−u
2
a u
2
+ b a 1, u
2
a + a
2
+ u
2
+ 2a + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
u
2
u + 1
a
2
=
u
2
+ 1
u
2
u + 1
a
6
=
1
0
a
7
=
a
u
2
a + u
2
+ a + 1
a
11
=
u
2
a au + 2u
2
+ 2a u + 4
au + u
2
+ 2
a
8
=
u
2
a a
u
2
a + au a
a
9
=
au
u
2
a + au a
a
3
=
u
u
2
u + 1
a
10
=
au
u
2
a + au a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
a + 5au 3u
2
3a + 3u 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
12
(u
3
u
2
+ 2u 1)
2
c
2
, c
6
, c
8
(u
3
+ u
2
1)
2
c
3
, c
9
u
6
c
4
, c
10
, c
11
(u
3
+ u
2
+ 2u + 1)
2
c
5
(u
3
u
2
+ 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
6
c
8
(y
3
y
2
+ 2y 1)
2
c
3
, c
9
y
6
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.162359 0.986732I
b = 0.215080 + 1.307140I
6.04826 6 1.085931 + 0.10I
u = 0.215080 + 1.307140I
a = 0.500000 + 0.424452I
b = 0.569840
1.91067 2.82812I 9.95703 + 1.11003I
u = 0.215080 1.307140I
a = 0.162359 + 0.986732I
b = 0.215080 1.307140I
6.04826 6 1.085931 + 0.10I
u = 0.215080 1.307140I
a = 0.500000 0.424452I
b = 0.569840
1.91067 + 2.82812I 9.95703 1.11003I
u = 0.569840
a = 1.16236 + 0.98673I
b = 0.215080 + 1.307140I
1.91067 + 2.82812I 9.95703 1.11003I
u = 0.569840
a = 1.16236 0.98673I
b = 0.215080 1.307140I
1.91067 2.82812I 9.95703 + 1.11003I
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
12
((u
3
u
2
+ 2u 1)
3
)(u
15
u
14
+ ··· + 3u + 1)(u
60
3u
59
+ ··· + 8u 1)
c
2
, c
6
, c
8
((u
3
+ u
2
1)
3
)(u
15
+ u
14
+ ··· + u + 1)(u
60
+ 3u
59
+ ··· + 520u 137)
c
3
, c
9
u
9
(u
15
7u
14
+ ··· + 32u 8)(u
30
+ 3u
29
+ ··· 12u 8)
2
c
4
, c
10
, c
11
((u
3
+ u
2
+ 2u + 1)
3
)(u
15
u
14
+ ··· + 3u + 1)(u
60
3u
59
+ ··· + 8u 1)
c
5
((u
3
u
2
+ 1)
3
)(u
15
+ u
14
+ ··· + u + 1)(u
60
+ 3u
59
+ ··· + 520u 137)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
15
+ 13y
14
+ ··· + y 1)
· (y
60
+ 49y
59
+ ··· 28y + 1)
c
2
, c
5
, c
6
c
8
((y
3
y
2
+ 2y 1)
3
)(y
15
15y
14
+ ··· + y 1)
· (y
60
43y
59
+ ··· 297252y + 18769)
c
3
, c
9
y
9
(y
15
+ 7y
14
+ ··· 320y 64)(y
30
+ 21y
29
+ ··· 208y + 64)
2
25