10
89
(K10a
21
)
A knot diagram
1
Linearized knot diagam
4 7 6 1 8 10 9 5 3 2
Solving Sequence
1,5
4
2,9
8 6 3 7 10
c
4
c
1
c
8
c
5
c
3
c
7
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, u
8
+ 2u
7
+ 3u
6
+ 2u
5
+ u
4
+ a 1, u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 2u
2
+ u 1i
I
u
2
= h−2.54158 × 10
21
u
39
+ 3.72578 × 10
21
u
38
+ ··· + 1.43109 × 10
22
b 1.56356 × 10
21
,
3.70291 × 10
21
u
39
+ 3.38172 × 10
21
u
38
+ ··· + 1.43109 × 10
22
a 2.35738 × 10
22
, u
40
u
39
+ ··· 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb + u, u
8
+ 2u
7
+ 3u
6
+ 2u
5
+ u
4
+ a 1, u
9
+ 2u
8
+ · · · + u 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
u
8
2u
7
3u
6
2u
5
u
4
+ 1
u
a
8
=
u
8
2u
7
3u
6
2u
5
u
4
+ u + 1
u
a
6
=
u
7
+ 2u
6
+ 4u
5
+ 4u
4
+ 4u
3
+ 3u
2
+ 2u
u
2
a
3
=
u
7
+ 3u
6
+ 7u
5
+ 8u
4
+ 7u
3
+ 4u
2
+ u
u
7
+ u
6
+ 2u
5
+ u
4
+ u
3
a
7
=
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ 1
u
3
u
a
10
=
u
3
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
4u
7
8u
6
4u
5
4u
4
+ 4u
3
+ 8u
2
+ 8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 2u
2
+ u 1
c
2
u
9
13u
8
+ ··· + 152u 32
c
3
u
9
13u
8
+ ··· + 208u 32
c
6
, c
9
u
9
2u
6
+ 5u
5
+ 4u
3
6u
2
+ 3u 1
c
7
, c
10
u
9
+ 4u
8
+ 10u
7
+ 16u
6
+ 19u
5
+ 20u
4
+ 18u
3
+ 12u
2
+ 5u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
9
+ 4y
8
+ 10y
7
+ 16y
6
+ 19y
5
+ 20y
4
+ 18y
3
+ 12y
2
+ 5y 1
c
2
y
9
25y
8
+ ··· 192y 1024
c
3
y
9
23y
8
+ ··· + 8960y 1024
c
6
, c
9
y
9
+ 10y
7
+ 4y
6
+ 31y
5
+ 16y
4
+ 42y
3
12y
2
3y 1
c
7
, c
10
y
9
+ 4y
8
+ 10y
7
5y
5
+ 8y
4
+ 66y
3
+ 76y
2
+ 49y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.870256 + 0.574591I
a = 1.51055 0.27719I
b = 0.870256 0.574591I
4.84938 + 3.79988I 8.45408 1.48636I
u = 0.870256 0.574591I
a = 1.51055 + 0.27719I
b = 0.870256 + 0.574591I
4.84938 3.79988I 8.45408 + 1.48636I
u = 0.547196 + 0.894013I
a = 4.54039 + 0.41851I
b = 0.547196 0.894013I
0.19748 + 4.39098I 9.5886 + 15.7654I
u = 0.547196 0.894013I
a = 4.54039 0.41851I
b = 0.547196 + 0.894013I
0.19748 4.39098I 9.5886 15.7654I
u = 0.168491 + 1.118820I
a = 1.00104 + 1.15340I
b = 0.168491 1.118820I
6.19752 + 0.38154I 4.67885 0.54411I
u = 0.168491 1.118820I
a = 1.00104 1.15340I
b = 0.168491 + 1.118820I
6.19752 0.38154I 4.67885 + 0.54411I
u = 0.695984 + 1.121930I
a = 2.05153 + 0.69357I
b = 0.695984 1.121930I
1.4591 15.5661I 3.71332 + 9.69859I
u = 0.695984 1.121930I
a = 2.05153 0.69357I
b = 0.695984 + 1.121930I
1.4591 + 15.5661I 3.71332 9.69859I
u = 0.375070
a = 0.954532
b = 0.375070
1.02805 10.2000
5
II.
I
u
2
= h−2.54×10
21
u
39
+3.73×10
21
u
38
+· · ·+1.43×10
22
b1.56×10
21
, 3.70×
10
21
u
39
+3.38×10
21
u
38
+· · ·+1.43×10
22
a2.36×10
22
, u
40
u
39
+· · ·4u+1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
0.258747u
39
0.236304u
38
+ ··· 1.86737u + 1.64726
0.177597u
39
0.260346u
38
+ ··· 3.36976u + 0.109256
a
8
=
0.0811501u
39
+ 0.0240417u
38
+ ··· + 1.50239u + 1.53800
0.177597u
39
0.260346u
38
+ ··· 3.36976u + 0.109256
a
6
=
0.0521006u
39
0.686202u
38
+ ··· + 4.91261u + 0.428336
0.110686u
39
0.236069u
38
+ ··· 3.29989u + 1.06601
a
3
=
1.44465u
39
1.15627u
38
+ ··· + 1.62073u 1.83432
0.138363u
39
+ 0.574052u
38
+ ··· + 2.22447u + 0.383801
a
7
=
0.00240648u
39
0.744206u
38
+ ··· + 4.44922u + 0.596332
0.0437786u
39
0.281347u
38
+ ··· 3.16226u + 1.11303
a
10
=
u
3
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
72408804377930288848424
14310892564212518359243
u
39
77968614159801719652396
14310892564212518359243
u
38
+ ···
8681622498642290526880
622212720183152972141
u +
76038785248810355101710
14310892564212518359243
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
u
40
u
39
+ ··· 4u + 1
c
2
(u
20
+ 6u
19
+ ··· 2u 1)
2
c
3
(u
20
+ 5u
19
+ ··· 6u 1)
2
c
6
, c
9
u
40
+ 5u
39
+ ··· + 4u + 1
c
7
, c
10
u
40
+ 15u
39
+ ··· + 120u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
40
+ 15y
39
+ ··· + 120y
2
+ 1
c
2
(y
20
16y
19
+ ··· 16y + 1)
2
c
3
(y
20
7y
19
+ ··· 2y + 1)
2
c
6
, c
9
y
40
5y
39
+ ··· 8y + 1
c
7
, c
10
y
40
+ 19y
39
+ ··· + 240y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.548393 + 0.820650I
a = 1.93438 + 2.89472I
b = 0.548393 + 0.820650I
0.434649 15.8981 + 0.I
u = 0.548393 0.820650I
a = 1.93438 2.89472I
b = 0.548393 0.820650I
0.434649 15.8981 + 0.I
u = 0.632900 + 0.810710I
a = 0.713489 1.128410I
b = 1.003700 0.392952I
3.51067 0.70102I 13.30095 + 0.29053I
u = 0.632900 0.810710I
a = 0.713489 + 1.128410I
b = 1.003700 + 0.392952I
3.51067 + 0.70102I 13.30095 0.29053I
u = 0.602510 + 0.849943I
a = 0.252963 0.117129I
b = 0.232545 0.154995I
0.59509 + 2.36716I 1.43169 3.69296I
u = 0.602510 0.849943I
a = 0.252963 + 0.117129I
b = 0.232545 + 0.154995I
0.59509 2.36716I 1.43169 + 3.69296I
u = 0.378614 + 0.869397I
a = 1.02843 2.36154I
b = 0.378614 + 0.869397I
0.714628 8.43291 + 0.I
u = 0.378614 0.869397I
a = 1.02843 + 2.36154I
b = 0.378614 0.869397I
0.714628 8.43291 + 0.I
u = 0.932276 + 0.516877I
a = 1.277650 + 0.549417I
b = 0.693643 + 1.075960I
3.31734 + 9.59937I 6.13875 5.98964I
u = 0.932276 0.516877I
a = 1.277650 0.549417I
b = 0.693643 1.075960I
3.31734 9.59937I 6.13875 + 5.98964I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.592803 + 0.720077I
a = 0.714830 0.969785I
b = 0.783556 1.064140I
1.83047 + 2.21575I 9.27050 4.60917I
u = 0.592803 0.720077I
a = 0.714830 + 0.969785I
b = 0.783556 + 1.064140I
1.83047 2.21575I 9.27050 + 4.60917I
u = 0.630140 + 0.869793I
a = 1.50017 0.30493I
b = 1.009240 + 0.568343I
3.33020 4.24448I 12.4039 + 6.8707I
u = 0.630140 0.869793I
a = 1.50017 + 0.30493I
b = 1.009240 0.568343I
3.33020 + 4.24448I 12.4039 6.8707I
u = 1.003700 + 0.392952I
a = 1.226320 0.344870I
b = 0.632900 0.810710I
3.51067 0.70102I 13.30095 + 0.29053I
u = 1.003700 0.392952I
a = 1.226320 + 0.344870I
b = 0.632900 + 0.810710I
3.51067 + 0.70102I 13.30095 0.29053I
u = 0.604828 + 0.939285I
a = 2.13314 0.62294I
b = 0.729702 + 1.179840I
1.15558 6.98661I 6.87126 + 10.77467I
u = 0.604828 0.939285I
a = 2.13314 + 0.62294I
b = 0.729702 1.179840I
1.15558 + 6.98661I 6.87126 10.77467I
u = 0.124209 + 1.127990I
a = 0.383349 + 0.300461I
b = 0.592384 0.373525I
1.87648 + 2.61466I 1.96705 3.93297I
u = 0.124209 1.127990I
a = 0.383349 0.300461I
b = 0.592384 + 0.373525I
1.87648 2.61466I 1.96705 + 3.93297I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.402129 + 1.083400I
a = 0.297918 + 0.759573I
b = 0.116121 0.708920I
1.51323 + 2.73094I 0.60746 4.99024I
u = 0.402129 1.083400I
a = 0.297918 0.759573I
b = 0.116121 + 0.708920I
1.51323 2.73094I 0.60746 + 4.99024I
u = 1.009240 + 0.568343I
a = 1.38205 + 0.32422I
b = 0.630140 + 0.869793I
3.33020 + 4.24448I 12.4039 6.8707I
u = 1.009240 0.568343I
a = 1.38205 0.32422I
b = 0.630140 0.869793I
3.33020 4.24448I 12.4039 + 6.8707I
u = 0.575991 + 1.044940I
a = 1.005200 0.537066I
b = 0.056488 + 1.295430I
3.62992 7.26942I 0.25897 + 8.20898I
u = 0.575991 1.044940I
a = 1.005200 + 0.537066I
b = 0.056488 1.295430I
3.62992 + 7.26942I 0.25897 8.20898I
u = 0.693643 + 1.075960I
a = 0.527058 + 1.031180I
b = 0.932276 + 0.516877I
3.31734 9.59937I 6.13875 + 5.98964I
u = 0.693643 1.075960I
a = 0.527058 1.031180I
b = 0.932276 0.516877I
3.31734 + 9.59937I 6.13875 5.98964I
u = 0.116121 + 0.708920I
a = 1.021210 + 0.824545I
b = 0.402129 1.083400I
1.51323 + 2.73094I 0.60746 4.99024I
u = 0.116121 0.708920I
a = 1.021210 0.824545I
b = 0.402129 + 1.083400I
1.51323 2.73094I 0.60746 + 4.99024I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.056488 + 1.295430I
a = 0.609251 0.853594I
b = 0.575991 + 1.044940I
3.62992 + 7.26942I 0. 8.20898I
u = 0.056488 1.295430I
a = 0.609251 + 0.853594I
b = 0.575991 1.044940I
3.62992 7.26942I 0. + 8.20898I
u = 0.592384 + 0.373525I
a = 0.709608 0.345516I
b = 0.124209 1.127990I
1.87648 + 2.61466I 1.96705 3.93297I
u = 0.592384 0.373525I
a = 0.709608 + 0.345516I
b = 0.124209 + 1.127990I
1.87648 2.61466I 1.96705 + 3.93297I
u = 0.783556 + 1.064140I
a = 0.540110 0.656742I
b = 0.592803 0.720077I
1.83047 + 2.21575I 9.27050 4.60917I
u = 0.783556 1.064140I
a = 0.540110 + 0.656742I
b = 0.592803 + 0.720077I
1.83047 2.21575I 9.27050 + 4.60917I
u = 0.729702 + 1.179840I
a = 1.70843 0.53284I
b = 0.604828 + 0.939285I
1.15558 + 6.98661I 0. 10.77467I
u = 0.729702 1.179840I
a = 1.70843 + 0.53284I
b = 0.604828 0.939285I
1.15558 6.98661I 0. + 10.77467I
u = 0.232545 + 0.154995I
a = 1.036860 0.069991I
b = 0.602510 0.849943I
0.59509 + 2.36716I 1.43169 3.69296I
u = 0.232545 0.154995I
a = 1.036860 + 0.069991I
b = 0.602510 + 0.849943I
0.59509 2.36716I 1.43169 + 3.69296I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
(u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 2u
2
+ u 1)
· (u
40
u
39
+ ··· 4u + 1)
c
2
(u
9
13u
8
+ ··· + 152u 32)(u
20
+ 6u
19
+ ··· 2u 1)
2
c
3
(u
9
13u
8
+ ··· + 208u 32)(u
20
+ 5u
19
+ ··· 6u 1)
2
c
6
, c
9
(u
9
2u
6
+ ··· + 3u 1)(u
40
+ 5u
39
+ ··· + 4u + 1)
c
7
, c
10
(u
9
+ 4u
8
+ 10u
7
+ 16u
6
+ 19u
5
+ 20u
4
+ 18u
3
+ 12u
2
+ 5u 1)
· (u
40
+ 15u
39
+ ··· + 120u
2
+ 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
(y
9
+ 4y
8
+ 10y
7
+ 16y
6
+ 19y
5
+ 20y
4
+ 18y
3
+ 12y
2
+ 5y 1)
· (y
40
+ 15y
39
+ ··· + 120y
2
+ 1)
c
2
(y
9
25y
8
+ ··· 192y 1024)(y
20
16y
19
+ ··· 16y + 1)
2
c
3
(y
9
23y
8
+ ··· + 8960y 1024)(y
20
7y
19
+ ··· 2y + 1)
2
c
6
, c
9
(y
9
+ 10y
7
+ 4y
6
+ 31y
5
+ 16y
4
+ 42y
3
12y
2
3y 1)
· (y
40
5y
39
+ ··· 8y + 1)
c
7
, c
10
(y
9
+ 4y
8
+ 10y
7
5y
5
+ 8y
4
+ 66y
3
+ 76y
2
+ 49y 1)
· (y
40
+ 19y
39
+ ··· + 240y + 1)
14