12a
0952
(K12a
0952
)
A knot diagram
1
Linearized knot diagam
4 6 10 9 2 11 12 5 1 3 7 8
Solving Sequence
7,11
12 8 1
3,6
2 5 10 4 9
c
11
c
7
c
12
c
6
c
2
c
5
c
10
c
3
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.06116 × 10
117
u
76
+ 8.53092 × 10
117
u
75
+ ··· + 9.26283 × 10
117
b + 6.65560 × 10
118
,
1.56367 × 10
119
u
76
+ 2.54497 × 10
120
u
75
+ ··· + 1.20232 × 10
121
a 2.34026 × 10
122
,
u
77
u
76
+ ··· 267u 11i
I
u
2
= hu
7
5u
5
+ u
4
+ 7u
3
3u
2
+ b 2u + 1, u
7
5u
5
+ u
4
+ 7u
3
4u
2
+ a 2u + 3,
u
14
10u
12
+ 2u
11
+ 39u
10
16u
9
73u
8
+ 46u
7
+ 63u
6
56u
5
17u
4
+ 25u
3
2u
2
2u + 1i
I
u
3
= hb a 1, a
2
+ a + 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.06 × 10
117
u
76
+ 8.53 × 10
117
u
75
+ · · · + 9.26 × 10
117
b + 6.66 ×
10
118
, 1.56 × 10
119
u
76
+ 2.54 × 10
120
u
75
+ · · · + 1.20 × 10
121
a 2.34 ×
10
122
, u
77
u
76
+ · · · 267u 11i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
0.0130055u
76
0.211672u
75
+ ··· + 76.4038u + 19.4646
0.438436u
76
0.920984u
75
+ ··· 179.356u 7.18528
a
6
=
u
u
a
2
=
0.167907u
76
0.560036u
75
+ ··· + 5.28710u + 16.3419
0.593337u
76
1.26935u
75
+ ··· 250.473u 10.3080
a
5
=
0.411584u
76
+ 0.826205u
75
+ ··· + 35.9924u 12.3201
0.626576u
76
+ 1.06289u
75
+ ··· + 236.498u + 9.82640
a
10
=
0.367850u
76
+ 0.345807u
75
+ ··· + 92.0501u + 14.7008
1.23947u
76
+ 1.85355u
75
+ ··· + 320.091u + 14.3520
a
4
=
0.210003u
76
1.23021u
75
+ ··· 8.76425u + 22.4581
1.40382u
76
3.36880u
75
+ ··· 583.635u 24.2823
a
9
=
0.449798u
76
+ 0.574876u
75
+ ··· + 146.822u + 17.4073
1.28744u
76
+ 2.03905u
75
+ ··· + 374.165u + 16.7057
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10.0222u
76
+ 16.2318u
75
+ ··· + 3664.59u + 156.514
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
77
9u
76
+ ··· 22u + 1
c
2
, c
5
u
77
+ u
76
+ ··· + 6201u + 108
c
3
, c
10
u
77
+ 33u
75
+ ··· 4491u 361
c
4
, c
8
u
77
+ 3u
76
+ ··· 368u 79
c
6
, c
7
, c
11
c
12
u
77
u
76
+ ··· 267u 11
c
9
u
77
+ 6u
76
+ ··· + 12u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
77
5y
76
+ ··· + 70y 1
c
2
, c
5
y
77
73y
76
+ ··· + 14541849y 11664
c
3
, c
10
y
77
+ 66y
76
+ ··· + 8226479y 130321
c
4
, c
8
y
77
+ 35y
76
+ ··· 116112y 6241
c
6
, c
7
, c
11
c
12
y
77
99y
76
+ ··· + 37057y 121
c
9
y
77
12y
76
+ ··· + 2032y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.038185 + 0.977495I
a = 0.0887050 0.0211649I
b = 0.180623 1.401330I
3.38576 7.06554I 0
u = 0.038185 0.977495I
a = 0.0887050 + 0.0211649I
b = 0.180623 + 1.401330I
3.38576 + 7.06554I 0
u = 0.959703 + 0.096825I
a = 0.20377 1.90119I
b = 0.228834 1.133660I
4.11267 2.60144I 0
u = 0.959703 0.096825I
a = 0.20377 + 1.90119I
b = 0.228834 + 1.133660I
4.11267 + 2.60144I 0
u = 1.005850 + 0.248662I
a = 1.40505 1.62886I
b = 0.109475 1.292590I
6.11081 3.61083I 0
u = 1.005850 0.248662I
a = 1.40505 + 1.62886I
b = 0.109475 + 1.292590I
6.11081 + 3.61083I 0
u = 1.051160 + 0.193722I
a = 0.588531 0.688350I
b = 0.226875 0.069667I
1.83333 1.94928I 0
u = 1.051160 0.193722I
a = 0.588531 + 0.688350I
b = 0.226875 + 0.069667I
1.83333 + 1.94928I 0
u = 0.982142 + 0.468578I
a = 0.91609 + 1.21859I
b = 0.39039 + 1.53681I
9.70005 6.50940I 0
u = 0.982142 0.468578I
a = 0.91609 1.21859I
b = 0.39039 1.53681I
9.70005 + 6.50940I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.766904 + 0.773981I
a = 0.921347 + 0.489206I
b = 0.091213 + 1.388450I
7.58242 + 2.37767I 0
u = 0.766904 0.773981I
a = 0.921347 0.489206I
b = 0.091213 1.388450I
7.58242 2.37767I 0
u = 0.830594 + 0.329150I
a = 0.253500 + 0.255718I
b = 1.058950 + 0.357207I
0.60061 7.40607I 0
u = 0.830594 0.329150I
a = 0.253500 0.255718I
b = 1.058950 0.357207I
0.60061 + 7.40607I 0
u = 0.821582 + 0.262973I
a = 0.40258 + 2.54715I
b = 0.246547 + 1.190120I
1.06852 + 6.57872I 0
u = 0.821582 0.262973I
a = 0.40258 2.54715I
b = 0.246547 1.190120I
1.06852 6.57872I 0
u = 1.002280 + 0.636861I
a = 0.88637 1.12933I
b = 0.36459 1.49562I
6.57021 + 12.38620I 0
u = 1.002280 0.636861I
a = 0.88637 + 1.12933I
b = 0.36459 + 1.49562I
6.57021 12.38620I 0
u = 1.241390 + 0.072237I
a = 0.175685 + 0.764416I
b = 0.482561 + 0.410258I
1.57748 + 1.98475I 0
u = 1.241390 0.072237I
a = 0.175685 0.764416I
b = 0.482561 0.410258I
1.57748 1.98475I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.177425 + 0.729527I
a = 0.364310 0.428903I
b = 0.162031 + 1.383920I
6.18457 + 2.49771I 14.4448 + 0.I
u = 0.177425 0.729527I
a = 0.364310 + 0.428903I
b = 0.162031 1.383920I
6.18457 2.49771I 14.4448 + 0.I
u = 0.582280 + 0.471981I
a = 0.168635 0.799555I
b = 0.574579 + 0.079542I
2.28027 3.59748I 8.00000 + 4.60742I
u = 0.582280 0.471981I
a = 0.168635 + 0.799555I
b = 0.574579 0.079542I
2.28027 + 3.59748I 8.00000 4.60742I
u = 0.693292 + 0.271817I
a = 1.153550 + 0.702978I
b = 0.344954 0.059152I
2.76074 0.90392I 8.00000 + 8.29169I
u = 0.693292 0.271817I
a = 1.153550 0.702978I
b = 0.344954 + 0.059152I
2.76074 + 0.90392I 8.00000 8.29169I
u = 0.733460 + 0.065281I
a = 0.382545 1.223710I
b = 1.83460 1.32389I
2.96946 + 0.15069I 50.9420 6.6243I
u = 0.733460 0.065281I
a = 0.382545 + 1.223710I
b = 1.83460 + 1.32389I
2.96946 0.15069I 50.9420 + 6.6243I
u = 0.698952 + 0.210701I
a = 2.35802 + 0.99441I
b = 0.121661 + 1.318110I
6.82768 + 0.82988I 17.2416 + 2.2447I
u = 0.698952 0.210701I
a = 2.35802 0.99441I
b = 0.121661 1.318110I
6.82768 0.82988I 17.2416 2.2447I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.255700 + 0.237415I
a = 0.056230 + 1.165950I
b = 0.446841 + 1.052400I
3.35743 + 1.81897I 0
u = 1.255700 0.237415I
a = 0.056230 1.165950I
b = 0.446841 1.052400I
3.35743 1.81897I 0
u = 1.073990 + 0.741345I
a = 0.808228 0.841791I
b = 0.033391 1.383920I
6.40287 + 1.28578I 0
u = 1.073990 0.741345I
a = 0.808228 + 0.841791I
b = 0.033391 + 1.383920I
6.40287 1.28578I 0
u = 0.629004 + 0.287209I
a = 0.96669 1.28469I
b = 0.289074 1.108480I
1.49663 + 0.99559I 12.39912 2.84502I
u = 0.629004 0.287209I
a = 0.96669 + 1.28469I
b = 0.289074 + 1.108480I
1.49663 0.99559I 12.39912 + 2.84502I
u = 0.282100 + 0.527030I
a = 0.630239 + 0.170161I
b = 0.633562 + 0.251400I
3.14780 + 0.17045I 2.65284 + 2.77130I
u = 0.282100 0.527030I
a = 0.630239 0.170161I
b = 0.633562 0.251400I
3.14780 0.17045I 2.65284 2.77130I
u = 0.560530
a = 0.504531
b = 0.446354
0.920531 10.2400
u = 0.077893 + 0.515289I
a = 0.22039 1.76338I
b = 0.537309 + 0.147685I
1.69633 + 4.51493I 4.07565 3.55592I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077893 0.515289I
a = 0.22039 + 1.76338I
b = 0.537309 0.147685I
1.69633 4.51493I 4.07565 + 3.55592I
u = 0.253806 + 0.423399I
a = 1.79739 + 0.32795I
b = 0.17927 1.41337I
2.23223 + 1.30516I 8.70846 + 0.00114I
u = 0.253806 0.423399I
a = 1.79739 0.32795I
b = 0.17927 + 1.41337I
2.23223 1.30516I 8.70846 0.00114I
u = 0.148906 + 0.435693I
a = 0.851093 + 0.698214I
b = 0.453634 + 1.011480I
1.00193 4.19580I 5.61939 + 0.53554I
u = 0.148906 0.435693I
a = 0.851093 0.698214I
b = 0.453634 1.011480I
1.00193 + 4.19580I 5.61939 0.53554I
u = 1.54899 + 0.13119I
a = 0.458921 0.532312I
b = 0.453875 0.087559I
4.84668 + 5.75436I 0
u = 1.54899 0.13119I
a = 0.458921 + 0.532312I
b = 0.453875 + 0.087559I
4.84668 5.75436I 0
u = 1.56208
a = 0.744675
b = 0.707392
8.21010 0
u = 0.194765 + 0.328946I
a = 0.927094 0.543449I
b = 0.274652 0.797432I
0.550057 + 1.180680I 6.71434 6.33000I
u = 0.194765 0.328946I
a = 0.927094 + 0.543449I
b = 0.274652 + 0.797432I
0.550057 1.180680I 6.71434 + 6.33000I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63594 + 0.07265I
a = 0.49221 2.03787I
b = 0.21035 1.56875I
9.51163 2.28865I 0
u = 1.63594 0.07265I
a = 0.49221 + 2.03787I
b = 0.21035 + 1.56875I
9.51163 + 2.28865I 0
u = 1.65591 + 0.01982I
a = 1.12708 1.41391I
b = 1.88510 1.34051I
11.46620 0.48828I 0
u = 1.65591 0.01982I
a = 1.12708 + 1.41391I
b = 1.88510 + 1.34051I
11.46620 + 0.48828I 0
u = 1.65428 + 0.07783I
a = 0.140794 + 0.057576I
b = 0.803163 0.072746I
11.09700 + 2.25616I 0
u = 1.65428 0.07783I
a = 0.140794 0.057576I
b = 0.803163 + 0.072746I
11.09700 2.25616I 0
u = 1.65550 + 0.05326I
a = 0.86314 + 1.70541I
b = 0.324921 + 1.348630I
15.2209 1.8009I 0
u = 1.65550 0.05326I
a = 0.86314 1.70541I
b = 0.324921 1.348630I
15.2209 + 1.8009I 0
u = 1.67130 + 0.08386I
a = 0.571962 + 0.560598I
b = 1.40627 + 0.45907I
9.37948 + 8.96392I 0
u = 1.67130 0.08386I
a = 0.571962 0.560598I
b = 1.40627 0.45907I
9.37948 8.96392I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.67370 + 0.06775I
a = 0.03577 + 2.41906I
b = 0.14904 + 1.40818I
9.88025 7.83088I 0
u = 1.67370 0.06775I
a = 0.03577 2.41906I
b = 0.14904 1.40818I
9.88025 + 7.83088I 0
u = 1.69944 + 0.01339I
a = 0.04463 2.12033I
b = 0.18677 1.44922I
13.55490 + 2.95411I 0
u = 1.69944 0.01339I
a = 0.04463 + 2.12033I
b = 0.18677 + 1.44922I
13.55490 2.95411I 0
u = 1.71187 + 0.02596I
a = 0.0605613 0.0979481I
b = 0.722947 + 0.070558I
11.60350 + 1.31140I 0
u = 1.71187 0.02596I
a = 0.0605613 + 0.0979481I
b = 0.722947 0.070558I
11.60350 1.31140I 0
u = 1.70725 + 0.13135I
a = 0.35570 + 1.93715I
b = 0.54806 + 1.71252I
19.0731 + 8.9271I 0
u = 1.70725 0.13135I
a = 0.35570 1.93715I
b = 0.54806 1.71252I
19.0731 8.9271I 0
u = 1.70371 + 0.24470I
a = 0.58315 + 1.47761I
b = 0.33341 + 1.43214I
16.0310 6.4382I 0
u = 1.70371 0.24470I
a = 0.58315 1.47761I
b = 0.33341 1.43214I
16.0310 + 6.4382I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72083 + 0.06542I
a = 0.72947 1.92804I
b = 0.275006 1.356000I
15.8163 + 4.8861I 0
u = 1.72083 0.06542I
a = 0.72947 + 1.92804I
b = 0.275006 + 1.356000I
15.8163 4.8861I 0
u = 1.72028 + 0.18203I
a = 0.48183 1.86225I
b = 0.50074 1.61966I
15.9464 15.6846I 0
u = 1.72028 0.18203I
a = 0.48183 + 1.86225I
b = 0.50074 + 1.61966I
15.9464 + 15.6846I 0
u = 1.78884 + 0.15629I
a = 0.43586 1.59414I
b = 0.29442 1.43542I
16.5992 + 2.4652I 0
u = 1.78884 0.15629I
a = 0.43586 + 1.59414I
b = 0.29442 + 1.43542I
16.5992 2.4652I 0
u = 0.0577950
a = 15.4136
b = 0.598762
1.41671 4.26830
12
II. I
u
2
= hu
7
5u
5
+ u
4
+ 7u
3
3u
2
+ b 2u + 1, u
7
5u
5
+ u
4
+ 7u
3
4u
2
+ a 2u + 3, u
14
10u
12
+ · · · 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
7
+ 5u
5
u
4
7u
3
+ 4u
2
+ 2u 3
u
7
+ 5u
5
u
4
7u
3
+ 3u
2
+ 2u 1
a
6
=
u
u
a
2
=
u
7
+ 5u
5
2u
4
7u
3
+ 6u
2
+ 2u 3
u
7
+ 5u
5
2u
4
7u
3
+ 5u
2
+ 2u 1
a
5
=
u
10
+ 7u
8
2u
7
17u
6
+ 10u
5
+ 16u
4
15u
3
4u
2
+ 7u
u
10
+ 7u
8
2u
7
17u
6
+ 9u
5
+ 16u
4
11u
3
4u
2
+ 3u
a
10
=
u
9
+ 7u
7
u
6
17u
5
+ 5u
4
+ 17u
3
7u
2
6u + 3
u
3
2u
a
4
=
u
10
+ 7u
8
3u
7
17u
6
+ 16u
5
+ 14u
4
25u
3
+ 3u
2
+ 10u 4
u
10
+ 7u
8
2u
7
17u
6
+ 10u
5
+ 15u
4
14u
3
u
2
+ 4u 1
a
9
=
u
12
+ u
11
+ ··· 9u + 3
u
12
+ u
11
+ ··· 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
u
13
+3u
12
+8u
11
28u
10
15u
9
+99u
8
25u
7
156u
6
+108u
5
+92u
4
110u
3
+u
2
+35u23
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
3u
13
+ ··· 8u + 1
c
2
u
14
+ 6u
13
+ ··· + 3u + 1
c
3
u
14
+ 3u
12
+ u
10
u
9
5u
8
2u
7
5u
6
+ u
3
+ 2u
2
+ u + 1
c
4
u
14
+ u
13
+ 2u
12
+ u
11
5u
8
2u
7
5u
6
u
5
+ u
4
+ 3u
2
+ 1
c
5
u
14
6u
13
+ ··· 3u + 1
c
6
, c
7
u
14
10u
12
+ ··· + 2u + 1
c
8
u
14
u
13
+ 2u
12
u
11
5u
8
+ 2u
7
5u
6
+ u
5
+ u
4
+ 3u
2
+ 1
c
9
u
14
+ u
13
+ ··· 13u + 3
c
10
u
14
+ 3u
12
+ u
10
+ u
9
5u
8
+ 2u
7
5u
6
u
3
+ 2u
2
u + 1
c
11
, c
12
u
14
10u
12
+ ··· 2u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
y
13
+ ··· 16y + 1
c
2
, c
5
y
14
14y
13
+ ··· 5y + 1
c
3
, c
10
y
14
+ 6y
13
+ ··· + 3y + 1
c
4
, c
8
y
14
+ 3y
13
+ ··· + 6y + 1
c
6
, c
7
, c
11
c
12
y
14
20y
13
+ ··· 8y + 1
c
9
y
14
3y
13
+ ··· 367y + 9
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.769273 + 0.499501I
a = 1.56602 0.52282I
b = 0.091706 1.291320I
6.35538 1.76661I 11.51225 + 3.46978I
u = 0.769273 0.499501I
a = 1.56602 + 0.52282I
b = 0.091706 + 1.291320I
6.35538 + 1.76661I 11.51225 3.46978I
u = 0.796065
a = 0.323376
b = 1.04290
3.10490 12.3270
u = 1.235030 + 0.234166I
a = 0.21622 + 1.52053I
b = 0.313310 + 0.942121I
2.96355 + 3.01467I 12.7328 6.3955I
u = 1.235030 0.234166I
a = 0.21622 1.52053I
b = 0.313310 0.942121I
2.96355 3.01467I 12.7328 + 6.3955I
u = 1.49700 + 0.09797I
a = 0.579846 + 0.369336I
b = 0.348422 + 0.662650I
5.58734 + 6.30976I 15.1896 6.5023I
u = 1.49700 0.09797I
a = 0.579846 0.369336I
b = 0.348422 0.662650I
5.58734 6.30976I 15.1896 + 6.5023I
u = 1.54154
a = 1.13801
b = 0.761672
8.65121 25.5320
u = 0.422763
a = 2.69875
b = 0.877477
1.82255 28.5550
u = 0.221437 + 0.280509I
a = 2.37781 + 0.90237I
b = 0.348156 + 0.778139I
0.41125 4.94330I 12.3996 + 6.8028I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.221437 0.280509I
a = 2.37781 0.90237I
b = 0.348156 0.778139I
0.41125 + 4.94330I 12.3996 6.8028I
u = 1.67943
a = 0.353377
b = 1.17385
11.9636 13.8850
u = 1.72981 + 0.10668I
a = 0.69894 1.68693I
b = 0.281906 1.317870I
15.5021 + 4.1610I 13.01637 + 0.23068I
u = 1.72981 0.10668I
a = 0.69894 + 1.68693I
b = 0.281906 + 1.317870I
15.5021 4.1610I 13.01637 0.23068I
17
III. I
u
3
= hb a 1, a
2
+ a + 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
8
=
1
0
a
1
=
0
1
a
3
=
a
a + 1
a
6
=
1
1
a
2
=
a + 1
a + 2
a
5
=
a
a + 1
a
10
=
0
a
a
4
=
a
a
a
9
=
0
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
u
2
u + 1
c
2
, c
6
, c
7
(u 1)
2
c
3
, c
4
u
2
+ u + 1
c
5
, c
11
, c
12
(u + 1)
2
c
9
u
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
y
2
+ y + 1
c
2
, c
5
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
9
y
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
3.28987 15.0000
u = 1.00000
a = 0.500000 0.866025I
b = 0.500000 0.866025I
3.28987 15.0000
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
14
3u
13
+ ··· 8u + 1)(u
77
9u
76
+ ··· 22u + 1)
c
2
((u 1)
2
)(u
14
+ 6u
13
+ ··· + 3u + 1)(u
77
+ u
76
+ ··· + 6201u + 108)
c
3
(u
2
+ u + 1)(u
14
+ 3u
12
+ ··· + u + 1)
· (u
77
+ 33u
75
+ ··· 4491u 361)
c
4
(u
2
+ u + 1)(u
14
+ u
13
+ ··· + 3u
2
+ 1)
· (u
77
+ 3u
76
+ ··· 368u 79)
c
5
((u + 1)
2
)(u
14
6u
13
+ ··· 3u + 1)(u
77
+ u
76
+ ··· + 6201u + 108)
c
6
, c
7
((u 1)
2
)(u
14
10u
12
+ ··· + 2u + 1)(u
77
u
76
+ ··· 267u 11)
c
8
(u
2
u + 1)(u
14
u
13
+ ··· + 3u
2
+ 1)
· (u
77
+ 3u
76
+ ··· 368u 79)
c
9
u
2
(u
14
+ u
13
+ ··· 13u + 3)(u
77
+ 6u
76
+ ··· + 12u + 8)
c
10
(u
2
u + 1)(u
14
+ 3u
12
+ ··· u + 1)
· (u
77
+ 33u
75
+ ··· 4491u 361)
c
11
, c
12
((u + 1)
2
)(u
14
10u
12
+ ··· 2u + 1)(u
77
u
76
+ ··· 267u 11)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
14
y
13
+ ··· 16y + 1)(y
77
5y
76
+ ··· + 70y 1)
c
2
, c
5
((y 1)
2
)(y
14
14y
13
+ ··· 5y + 1)
· (y
77
73y
76
+ ··· + 14541849y 11664)
c
3
, c
10
(y
2
+ y + 1)(y
14
+ 6y
13
+ ··· + 3y + 1)
· (y
77
+ 66y
76
+ ··· + 8226479y 130321)
c
4
, c
8
(y
2
+ y + 1)(y
14
+ 3y
13
+ ··· + 6y + 1)
· (y
77
+ 35y
76
+ ··· 116112y 6241)
c
6
, c
7
, c
11
c
12
((y 1)
2
)(y
14
20y
13
+ ··· 8y + 1)
· (y
77
99y
76
+ ··· + 37057y 121)
c
9
y
2
(y
14
3y
13
+ ··· 367y + 9)(y
77
12y
76
+ ··· + 2032y 64)
23