12a
0975
(K12a
0975
)
A knot diagram
1
Linearized knot diagam
4 6 11 7 9 2 10 12 5 1 3 8
Solving Sequence
3,11
4
8,12
9 1 10 7 5 6 2
c
3
c
11
c
8
c
12
c
10
c
7
c
4
c
5
c
2
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ u
5
3u
4
+ 2u
3
4u
2
+ b + 4u 2, u
6
+ u
5
3u
4
+ 2u
3
4u
2
+ a + 4u 1,
u
8
2u
7
+ 5u
6
6u
5
+ 9u
4
10u
3
+ 8u
2
4u + 1i
I
u
2
= h4u
14
a u
14
+ ··· + 8b 6, 4u
14
a u
14
+ ··· + 4a + 4, u
15
+ 2u
14
+ ··· 2u 2i
I
u
3
= h−1.77260 × 10
28
u
29
+ 1.42417 × 10
29
u
28
+ ··· + 2.16558 × 10
29
b + 4.09260 × 10
29
,
1.02276 × 10
29
u
29
4.13857 × 10
29
u
28
+ ··· + 4.65600 × 10
30
a 8.84106 × 10
30
,
u
30
8u
29
+ ··· 148u + 43i
I
u
4
= h−32051170u
19
+ 10432934u
18
+ ··· + 12423084b 29249775,
32051170u
19
+ 10432934u
18
+ ··· + 12423084a 16826691, 2u
20
+ 11u
18
+ ··· + 4u + 1i
I
u
5
= h−25516394u
19
+ 1505498u
18
+ ··· + 12423084b 14885617,
32363894u
19
+ 11810374u
18
+ ··· + 6211542a 28830039, 2u
20
+ 11u
18
+ ··· + 4u + 1i
I
u
6
= h2u
6
a + 3u
5
a + 5u
6
+ 8u
4
a + 6u
5
+ 7u
3
a + 17u
4
+ 12u
2
a + 16u
3
+ 6au + 18u
2
+ 6b a + 15u + 2,
u
6
a u
5
a 4u
4
a 3u
3
a + u
4
5u
2
a + a
2
2au + 2u
2
+ 1, u
7
+ u
6
+ 4u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ u + 1i
I
u
7
= h177u
13
1117u
12
+ ··· + 52b 1064, 296u
13
1867u
12
+ ··· + 52a 1718,
u
14
7u
13
+ ··· 20u + 4i
I
u
8
= hb a 1, a
2
+ au a + u, u
2
+ u + 1i
I
u
9
= h−2u
3
4u
2
+ 4b 3u + 1, 2u
3
+ 2a + u 3, 2u
4
+ 2u
3
+ 3u
2
+ 1i
I
u
10
= h−2u
3
+ 8u
2
+ 4b + 13u + 7, 2u
3
+ 8u
2
+ 4a + 13u + 11, 2u
4
+ 2u
3
+ 3u
2
+ 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hu
11
2u
10
+ 6u
9
7u
8
+ 11u
7
7u
6
+ 4u
5
u
4
5u
3
2u
2
+ 2b 2u 2,
5u
11
11u
10
+ 32u
9
39u
8
+ 60u
7
43u
6
+ 31u
5
12u
4
16u
3
12u
2
+ 4a 8u 16,
u
12
3u
11
+ 8u
10
13u
9
+ 18u
8
19u
7
+ 13u
6
8u
5
2u
4
+ 2u
3
+ 4i
I
u
12
= h973497u
11
a + 1110148u
11
+ ··· + 28861189a 48376404,
2096423u
11
a + 1944076u
11
+ ··· + 42713350a + 16958187,
u
12
+ 4u
11
+ 14u
10
+ 31u
9
+ 68u
8
+ 107u
7
+ 166u
6
+ 189u
5
+ 205u
4
+ 163u
3
+ 110u
2
+ 52u + 17i
I
u
13
= hu
2
+ b, u
2
+ a + 1, u
4
u
3
+ 3u
2
2u + 1i
I
u
14
= hb a u, a
2
+ 2au + a 2, u
2
+ u + 1i
* 14 irreducible components of dim
C
= 0, with total 192 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−u
6
+ u
5
3u
4
+ 2u
3
4u
2
+ b + 4u 2, u
6
+ u
5
3u
4
+ 2u
3
4u
2
+ a + 4u 1, u
8
2u
7
+ · · · 4u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
u
6
u
5
+ 3u
4
2u
3
+ 4u
2
4u + 1
u
6
u
5
+ 3u
4
2u
3
+ 4u
2
4u + 2
a
12
=
u
u
a
9
=
u
6
u
5
+ 3u
4
2u
3
+ 5u
2
4u + 1
u
6
u
5
+ 3u
4
2u
3
+ 5u
2
4u + 2
a
1
=
u
7
+ u
6
3u
5
+ 2u
4
4u
3
+ 4u
2
u
7
+ u
6
3u
5
+ 2u
4
4u
3
+ 4u
2
u
a
10
=
u
7
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
4u + 2
u
7
u
6
+ 3u
5
u
4
+ 4u
3
2u
2
+ 1
a
7
=
u
7
3u
6
+ 6u
5
9u
4
+ 11u
3
14u
2
+ 11u 4
u
3
+ u
a
5
=
u
7
+ 3u
6
6u
5
+ 9u
4
10u
3
+ 14u
2
11u + 4
u
7
u
6
+ 3u
5
2u
4
+ 5u
3
4u
2
+ u
a
6
=
2u
7
+ 4u
6
9u
5
+ 11u
4
15u
3
+ 18u
2
12u + 4
u
a
2
=
u
6
+ u
5
3u
4
+ 2u
3
4u
2
+ 4u 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
7
+ 24u
6
56u
5
+ 68u
4
92u
3
+ 108u
2
72u + 28
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
8
2u
7
u
6
+ 6u
5
u
4
6u
3
+ 8u
2
4u + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
8
2u
7
+ 5u
6
6u
5
+ 9u
4
10u
3
+ 8u
2
4u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
8
6y
7
+ 23y
6
42y
5
+ 43y
4
6y
3
+ 14y
2
+ 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
8
+ 6y
7
+ 19y
6
+ 30y
5
+ 27y
4
+ 6y
3
+ 2y
2
+ 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341045 + 0.670313I
a = 1.14930 1.40518I
b = 0.149303 1.405180I
5.74556 + 5.06444I 6.22905 4.15704I
u = 0.341045 0.670313I
a = 1.14930 + 1.40518I
b = 0.149303 + 1.405180I
5.74556 5.06444I 6.22905 + 4.15704I
u = 0.548152 + 1.211390I
a = 0.942196 0.385112I
b = 1.94220 0.38511I
7.41391 7.06214I 0.57220 + 4.67413I
u = 0.548152 1.211390I
a = 0.942196 + 0.385112I
b = 1.94220 + 0.38511I
7.41391 + 7.06214I 0.57220 4.67413I
u = 0.566503 + 0.259919I
a = 0.452212 + 0.073091I
b = 0.547788 + 0.073091I
1.156280 + 0.316293I 9.01033 1.88379I
u = 0.566503 0.259919I
a = 0.452212 0.073091I
b = 0.547788 0.073091I
1.156280 0.316293I 9.01033 + 1.88379I
u = 0.64060 + 1.47097I
a = 1.65932 + 0.19565I
b = 2.65932 + 0.19565I
14.3158 + 20.3233I 3.35347 9.42778I
u = 0.64060 1.47097I
a = 1.65932 0.19565I
b = 2.65932 0.19565I
14.3158 20.3233I 3.35347 + 9.42778I
6
II.
I
u
2
= h4u
14
au
14
+· · ·+8b6, 4u
14
au
14
+· · ·+4a+4, u
15
+2u
14
+· · ·−2u2i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
a
1
2
u
14
a +
1
8
u
14
+ ··· + 3u +
3
4
a
12
=
u
u
a
9
=
1
2
u
14
a
3
8
u
14
+ ··· + a
5
4
1
4
u
14
1
4
u
13
+ ··· + 2u
1
2
a
1
=
1
8
u
14
a +
3
8
u
14
+ ···
1
4
a
3
4
1
2
u
14
a
1
4
u
14
+ ··· + a
3
2
a
10
=
1
2
u
14
a
5
8
u
14
+ ··· + a +
1
4
1
2
u
14
a
5
8
u
14
+ ··· + 2u +
1
4
a
7
=
7
8
u
14
a +
9
8
u
14
+ ··· +
7
4
a
1
4
1
2
u
14
a + u
14
+ ··· + a + u
a
5
=
3
4
u
14
+
5
4
u
13
+ ···
1
2
u +
3
2
1
2
u
13
a +
3
8
u
14
+ ··· a
3
4
a
6
=
1
2
u
13
a
1
8
u
14
+ ··· a +
9
4
1
2
u
13
a +
1
8
u
14
+ ··· a
1
4
a
2
=
1
2
u
14
a +
5
4
u
14
+ ···
9
2
u
1
2
3
8
u
14
a +
3
8
u
14
+ ··· +
3
4
a
3
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
u
14
+u
13
+7u
12
+3u
11
+13u
10
11u
9
14u
8
58u
7
71u
6
81u
5
66u
4
26u
3
+2u
2
+16u+14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
30
2u
29
+ ··· + 22u + 1
c
2
, c
6
, c
8
c
12
u
30
8u
29
+ ··· 148u + 43
c
3
, c
5
, c
9
c
11
(u
15
+ 2u
14
+ ··· 2u 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
30
18y
29
+ ··· 206y + 1
c
2
, c
6
, c
8
c
12
y
30
+ 16y
29
+ ··· + 1144y + 1849
c
3
, c
5
, c
9
c
11
(y
15
+ 16y
14
+ ··· 32y 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.784607 + 0.130638I
a = 0.350326 0.122670I
b = 0.439042 0.323007I
1.36431 + 3.70005I 4.97943 3.63821I
u = 0.784607 + 0.130638I
a = 0.12761 + 1.99961I
b = 0.455331 + 0.530841I
1.36431 + 3.70005I 4.97943 3.63821I
u = 0.784607 0.130638I
a = 0.350326 + 0.122670I
b = 0.439042 + 0.323007I
1.36431 3.70005I 4.97943 + 3.63821I
u = 0.784607 0.130638I
a = 0.12761 1.99961I
b = 0.455331 0.530841I
1.36431 3.70005I 4.97943 + 3.63821I
u = 0.013344 + 1.238380I
a = 0.482542 + 0.420194I
b = 0.083565 0.439251I
9.63722 1.22028I 4.95246 + 1.57507I
u = 0.013344 + 1.238380I
a = 1.32269 + 0.59357I
b = 2.47269 + 0.15514I
9.63722 1.22028I 4.95246 + 1.57507I
u = 0.013344 1.238380I
a = 0.482542 0.420194I
b = 0.083565 + 0.439251I
9.63722 + 1.22028I 4.95246 1.57507I
u = 0.013344 1.238380I
a = 1.32269 0.59357I
b = 2.47269 0.15514I
9.63722 + 1.22028I 4.95246 1.57507I
u = 0.520579 + 1.217160I
a = 0.310968 1.284780I
b = 0.120416 0.985660I
9.00480 3.51911I 6.70931 + 3.75254I
u = 0.520579 + 1.217160I
a = 1.41643 0.01039I
b = 2.34549 0.39766I
9.00480 3.51911I 6.70931 + 3.75254I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.520579 1.217160I
a = 0.310968 + 1.284780I
b = 0.120416 + 0.985660I
9.00480 + 3.51911I 6.70931 3.75254I
u = 0.520579 1.217160I
a = 1.41643 + 0.01039I
b = 2.34549 + 0.39766I
9.00480 + 3.51911I 6.70931 3.75254I
u = 0.261916 + 1.297730I
a = 0.020854 0.716031I
b = 0.182845 + 0.396366I
4.42818 + 0.58231I 0.85328 2.04557I
u = 0.261916 + 1.297730I
a = 1.40607 0.80438I
b = 2.21703 0.91007I
4.42818 + 0.58231I 0.85328 2.04557I
u = 0.261916 1.297730I
a = 0.020854 + 0.716031I
b = 0.182845 0.396366I
4.42818 0.58231I 0.85328 + 2.04557I
u = 0.261916 1.297730I
a = 1.40607 + 0.80438I
b = 2.21703 + 0.91007I
4.42818 0.58231I 0.85328 + 2.04557I
u = 0.585635
a = 0.23172 + 2.31597I
b = 0.989112 + 0.591455I
3.88049 1.05620
u = 0.585635
a = 0.23172 2.31597I
b = 0.989112 0.591455I
3.88049 1.05620
u = 0.43937 + 1.41900I
a = 0.136932 + 0.381950I
b = 0.399054 0.558077I
9.7235 13.1451I 2.87381 + 8.00014I
u = 0.43937 + 1.41900I
a = 1.83297 + 0.18088I
b = 2.83221 + 0.11599I
9.7235 13.1451I 2.87381 + 8.00014I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.43937 1.41900I
a = 0.136932 0.381950I
b = 0.399054 + 0.558077I
9.7235 + 13.1451I 2.87381 8.00014I
u = 0.43937 1.41900I
a = 1.83297 0.18088I
b = 2.83221 0.11599I
9.7235 + 13.1451I 2.87381 8.00014I
u = 0.035691 + 0.462074I
a = 0.047221 0.354434I
b = 0.399260 + 1.160460I
0.93924 + 2.34318I 11.9184 + 9.2243I
u = 0.035691 + 0.462074I
a = 1.88888 + 1.66026I
b = 0.014065 + 0.524425I
0.93924 + 2.34318I 11.9184 + 9.2243I
u = 0.035691 0.462074I
a = 0.047221 + 0.354434I
b = 0.399260 1.160460I
0.93924 2.34318I 11.9184 9.2243I
u = 0.035691 0.462074I
a = 1.88888 1.66026I
b = 0.014065 0.524425I
0.93924 2.34318I 11.9184 9.2243I
u = 0.14079 + 1.54845I
a = 1.080100 + 0.342845I
b = 2.23176 0.04950I
15.8339 + 5.3491I 7.74364 3.13359I
u = 0.14079 + 1.54845I
a = 1.88425 0.16237I
b = 2.79363 0.26921I
15.8339 + 5.3491I 7.74364 3.13359I
u = 0.14079 1.54845I
a = 1.080100 0.342845I
b = 2.23176 + 0.04950I
15.8339 5.3491I 7.74364 + 3.13359I
u = 0.14079 1.54845I
a = 1.88425 + 0.16237I
b = 2.79363 + 0.26921I
15.8339 5.3491I 7.74364 + 3.13359I
12
III. I
u
3
= h−1.77 × 10
28
u
29
+ 1.42 × 10
29
u
28
+ · · · + 2.17 × 10
29
b + 4.09 ×
10
29
, 1.02 × 10
29
u
29
4.14 × 10
29
u
28
+ · · · + 4.66 × 10
30
a 8.84 ×
10
30
, u
30
8u
29
+ · · · 148u + 43i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
0.0219666u
29
+ 0.0888867u
28
+ ··· + 0.298145u + 1.89885
0.0818533u
29
0.657640u
28
+ ··· + 9.92980u 1.88984
a
12
=
u
u
a
9
=
0.0321478u
29
+ 0.0808101u
28
+ ··· + 8.27059u 1.71451
0.0716720u
29
0.665717u
28
+ ··· + 17.9022u 5.50320
a
1
=
0.0704699u
29
+ 0.550645u
28
+ ··· 8.18718u + 4.94852
0.0379149u
29
+ 0.345413u
28
+ ··· 6.57038u + 2.46631
a
10
=
0.0366426u
29
+ 0.259362u
28
+ ··· 6.63127u + 4.11399
0.0300022u
29
0.243000u
28
+ ··· + 3.11454u + 0.123136
a
7
=
0.0280214u
29
0.381962u
28
+ ··· + 17.7589u 8.40340
0.154881u
29
1.25831u
28
+ ··· + 21.8368u 8.10010
a
5
=
0.104726u
29
0.766133u
28
+ ··· 0.915910u + 2.40284
0.0946306u
29
+ 0.749606u
28
+ ··· 18.9034u + 10.2528
a
6
=
0.0439498u
29
0.269745u
28
+ ··· 6.25999u + 3.42523
0.0840317u
29
+ 0.682435u
28
+ ··· 11.5766u + 4.46425
a
2
=
0.0573560u
29
+ 0.420933u
28
+ ··· 2.70616u + 1.91831
0.0552081u
29
+ 0.398971u
28
+ ··· 2.33592u + 1.39986
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.444120u
29
+ 3.62226u
28
+ ··· 75.2699u + 36.1756
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
30
2u
29
+ ··· + 22u + 1
c
2
, c
6
, c
8
c
12
(u
15
+ 2u
14
+ ··· 2u 2)
2
c
3
, c
5
, c
9
c
11
u
30
8u
29
+ ··· 148u + 43
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
30
18y
29
+ ··· 206y + 1
c
2
, c
6
, c
8
c
12
(y
15
+ 16y
14
+ ··· 32y 4)
2
c
3
, c
5
, c
9
c
11
y
30
+ 16y
29
+ ··· + 1144y + 1849
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.591752 + 0.825766I
a = 0.404241 + 0.288042I
b = 0.014065 + 0.524425I
0.93924 + 2.34318I 11.9184 + 9.2243I
u = 0.591752 0.825766I
a = 0.404241 0.288042I
b = 0.014065 0.524425I
0.93924 2.34318I 11.9184 9.2243I
u = 0.075236 + 1.080100I
a = 1.00453 + 1.06811I
b = 2.21703 + 0.91007I
4.42818 0.58231I 0.85328 + 2.04557I
u = 0.075236 1.080100I
a = 1.00453 1.06811I
b = 2.21703 0.91007I
4.42818 + 0.58231I 0.85328 2.04557I
u = 0.443554 + 1.009940I
a = 0.775618 0.105347I
b = 0.989112 0.591455I
3.88049 61.056179 + 0.10I
u = 0.443554 1.009940I
a = 0.775618 + 0.105347I
b = 0.989112 + 0.591455I
3.88049 61.056179 + 0.10I
u = 1.059000 + 0.505555I
a = 0.52794 + 1.39650I
b = 0.083565 + 0.439251I
9.63722 + 1.22028I 4.95246 1.57507I
u = 1.059000 0.505555I
a = 0.52794 1.39650I
b = 0.083565 0.439251I
9.63722 1.22028I 4.95246 + 1.57507I
u = 0.449007 + 1.109600I
a = 0.310623 0.117713I
b = 0.455331 + 0.530841I
1.36431 + 3.70005I 4.97943 3.63821I
u = 0.449007 1.109600I
a = 0.310623 + 0.117713I
b = 0.455331 0.530841I
1.36431 3.70005I 4.97943 + 3.63821I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.712558 + 0.108600I
a = 0.25372 1.78675I
b = 0.399260 1.160460I
0.93924 2.34318I 11.9184 9.2243I
u = 0.712558 0.108600I
a = 0.25372 + 1.78675I
b = 0.399260 + 1.160460I
0.93924 + 2.34318I 11.9184 + 9.2243I
u = 0.012294 + 1.332420I
a = 1.42848 0.77990I
b = 2.34549 0.39766I
9.00480 3.51911I 6.70931 + 3.75254I
u = 0.012294 1.332420I
a = 1.42848 + 0.77990I
b = 2.34549 + 0.39766I
9.00480 + 3.51911I 6.70931 3.75254I
u = 0.645515 + 0.054065I
a = 0.751134 0.625068I
b = 0.439042 0.323007I
1.36431 + 3.70005I 4.97943 3.63821I
u = 0.645515 0.054065I
a = 0.751134 + 0.625068I
b = 0.439042 + 0.323007I
1.36431 3.70005I 4.97943 + 3.63821I
u = 0.29345 + 1.39308I
a = 1.70894 0.39664I
b = 2.79363 0.26921I
15.8339 + 5.3491I 7.74364 3.13359I
u = 0.29345 1.39308I
a = 1.70894 + 0.39664I
b = 2.79363 + 0.26921I
15.8339 5.3491I 7.74364 + 3.13359I
u = 1.44906 + 0.04107I
a = 0.12382 1.54513I
b = 0.399054 0.558077I
9.7235 13.1451I 2.87381 + 8.00014I
u = 1.44906 0.04107I
a = 0.12382 + 1.54513I
b = 0.399054 + 0.558077I
9.7235 + 13.1451I 2.87381 8.00014I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.53111 + 1.38940I
a = 1.83564 0.05128I
b = 2.83221 0.11599I
9.7235 + 13.1451I 2.87381 8.00014I
u = 0.53111 1.38940I
a = 1.83564 + 0.05128I
b = 2.83221 + 0.11599I
9.7235 13.1451I 2.87381 + 8.00014I
u = 1.40117 + 0.50158I
a = 0.054654 + 1.276660I
b = 0.182845 + 0.396366I
4.42818 + 0.58231I 0.85328 2.04557I
u = 1.40117 0.50158I
a = 0.054654 1.276660I
b = 0.182845 0.396366I
4.42818 0.58231I 0.85328 + 2.04557I
u = 0.55829 + 1.41828I
a = 1.71347 0.13431I
b = 2.47269 + 0.15514I
9.63722 1.22028I 4.95246 + 1.57507I
u = 0.55829 1.41828I
a = 1.71347 + 0.13431I
b = 2.47269 0.15514I
9.63722 + 1.22028I 4.95246 1.57507I
u = 0.264872 + 0.387644I
a = 1.63538 1.39243I
b = 0.120416 + 0.985660I
9.00480 + 3.51911I 6.70931 3.75254I
u = 0.264872 0.387644I
a = 1.63538 + 1.39243I
b = 0.120416 0.985660I
9.00480 3.51911I 6.70931 + 3.75254I
u = 0.44538 + 1.83853I
a = 1.45375 + 0.31455I
b = 2.23176 + 0.04950I
15.8339 5.3491I 0
u = 0.44538 1.83853I
a = 1.45375 0.31455I
b = 2.23176 0.04950I
15.8339 + 5.3491I 0
18
IV.
I
u
4
= h−3.21 × 10
7
u
19
+ 1.04 × 10
7
u
18
+ · · · + 1.24 × 10
7
b 2.92 × 10
7
, 3.21 ×
10
7
u
19
+1.04×10
7
u
18
+· · ·+1.24×10
7
a1.68×10
7
, 2u
20
+11u
18
+· · ·+4u+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
2.57997u
19
0.839802u
18
+ ··· + 5.83982u + 1.35447
2.57997u
19
0.839802u
18
+ ··· + 5.83982u + 2.35447
a
12
=
u
u
a
9
=
2.57997u
19
0.839802u
18
+ ··· + 5.83982u + 1.35447
2.57997u
19
0.839802u
18
+ ··· + 5.83982u + 2.35447
a
1
=
0.839802u
19
+ 0.560480u
18
+ ··· + 4.80547u + 1.28998
0.839802u
19
+ 0.560480u
18
+ ··· + 3.80547u + 1.28998
a
10
=
2.75425u
19
+ 1.12237u
18
+ ··· 0.266870u + 0.439076
1.80815u
19
+ 2.12100u
18
+ ··· + 2.27399u + 0.719316
a
7
=
0.368104u
19
+ 0.851099u
18
+ ··· + 1.54512u + 0.318890
1.07331u
19
+ 1.27931u
18
+ ··· + 5.66065u + 2.13487
a
5
=
2.33263u
19
+ 4.14232u
18
+ ··· + 1.61849u 0.565148
0.0638148u
19
+ 2.08837u
18
+ ··· + 2.36860u 0.271319
a
6
=
2.39644u
19
+ 2.05395u
18
+ ··· 0.750113u 0.293830
1.78017u
19
+ 0.847531u
18
+ ··· 2.86952u 1.57817
a
2
=
0.946107u
19
+ 0.998631u
18
+ ··· + 2.54086u + 0.280240
1.82394u
19
+ 0.0731794u
18
+ ··· + 4.73492u + 1.50906
(ii) Obstruction class = 1
(iii) Cusp Shapes =
201044
3105771
u
19
4918603
3105771
u
18
+ ···
11843897
1035257
u +
24068461
6211542
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
10
+ 2u
9
+ u
8
2u
7
3u
6
+ 2u
4
+ 2u
3
3u
2
2u 2)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
2(2u
20
+ 11u
18
+ ··· + 4u + 1)
c
4
, c
10
4(4u
20
28u
19
+ ··· 448u + 73)
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
10
2y
9
+ 3y
8
6y
7
y
6
6y
5
+ 10y
4
4y
3
+ 9y
2
+ 8y + 4)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
4(4y
20
+ 44y
19
+ ··· 6y + 1)
c
4
, c
10
16(16y
20
8y
19
+ ··· + 42678y + 5329)
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.863041 + 0.424455I
a = 0.150300 0.336990I
b = 1.150300 0.336990I
1.77310 + 4.32568I 2.37801 5.30660I
u = 0.863041 0.424455I
a = 0.150300 + 0.336990I
b = 1.150300 + 0.336990I
1.77310 4.32568I 2.37801 + 5.30660I
u = 0.532247 + 0.733699I
a = 0.094270 0.781019I
b = 1.094270 0.781019I
3.96232 2.14246 + 0.I
u = 0.532247 0.733699I
a = 0.094270 + 0.781019I
b = 1.094270 + 0.781019I
3.96232 2.14246 + 0.I
u = 0.854424 + 0.268587I
a = 0.208143 1.003220I
b = 1.20814 1.00322I
4.52678 8.23619I 1.62263 + 8.93292I
u = 0.854424 0.268587I
a = 0.208143 + 1.003220I
b = 1.20814 + 1.00322I
4.52678 + 8.23619I 1.62263 8.93292I
u = 0.294566 + 0.835743I
a = 1.091400 + 0.492363I
b = 0.091403 + 0.492363I
7.15291 10.64039 + 0.I
u = 0.294566 0.835743I
a = 1.091400 0.492363I
b = 0.091403 0.492363I
7.15291 10.64039 + 0.I
u = 0.219333 + 1.144070I
a = 1.97577 + 0.10621I
b = 2.97577 + 0.10621I
1.77310 4.32568I 2.37801 + 5.30660I
u = 0.219333 1.144070I
a = 1.97577 0.10621I
b = 2.97577 0.10621I
1.77310 + 4.32568I 2.37801 5.30660I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.482255 + 0.664266I
a = 0.579450 + 0.348965I
b = 0.420550 + 0.348965I
0.97046 + 1.97408I 9.55166 2.43496I
u = 0.482255 0.664266I
a = 0.579450 0.348965I
b = 0.420550 0.348965I
0.97046 1.97408I 9.55166 + 2.43496I
u = 0.365634 + 1.127630I
a = 0.27691 1.63768I
b = 1.27691 1.63768I
10.4971 10.3444I 5.80333 + 10.34256I
u = 0.365634 1.127630I
a = 0.27691 + 1.63768I
b = 1.27691 + 1.63768I
10.4971 + 10.3444I 5.80333 10.34256I
u = 0.445937 + 1.170140I
a = 2.03642 0.41858I
b = 3.03642 0.41858I
4.52678 8.23619I 1.62263 + 8.93292I
u = 0.445937 1.170140I
a = 2.03642 + 0.41858I
b = 3.03642 + 0.41858I
4.52678 + 8.23619I 1.62263 8.93292I
u = 0.387590 + 0.116004I
a = 0.92490 + 1.07958I
b = 0.075100 + 1.079580I
0.97046 + 1.97408I 9.55166 2.43496I
u = 0.387590 0.116004I
a = 0.92490 1.07958I
b = 0.075100 1.079580I
0.97046 1.97408I 9.55166 + 2.43496I
u = 0.68994 + 1.64040I
a = 1.353940 + 0.198723I
b = 2.35394 + 0.19872I
10.4971 + 10.3444I 5.80333 10.34256I
u = 0.68994 1.64040I
a = 1.353940 0.198723I
b = 2.35394 0.19872I
10.4971 10.3444I 5.80333 + 10.34256I
23
V.
I
u
5
= h−2.55 × 10
7
u
19
+ 1.51 × 10
6
u
18
+ · · · + 1.24 × 10
7
b 1.49 × 10
7
, 3.24 ×
10
7
u
19
+1.18×10
7
u
18
+· · ·+6.21×10
6
a2.88×10
7
, 2u
20
+11u
18
+· · ·+4u+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
5.21028u
19
1.90136u
18
+ ··· + 9.08615u + 4.64137
2.05395u
19
0.121186u
18
+ ··· + 4.49906u + 1.19822
a
12
=
u
u
a
9
=
4.36275u
19
1.87619u
18
+ ··· + 7.10397u + 3.75128
1.20642u
19
0.0960206u
18
+ ··· + 2.51688u + 0.308135
a
1
=
2.01949u
19
0.106305u
18
+ ··· 6.22944u 1.77437
0.998631u
19
1.93025u
18
+ ··· 1.61197u 0.473054
a
10
=
2.08425u
19
1.02147u
18
+ ··· + 4.71094u + 2.53696
0.428211u
19
1.79215u
18
+ ··· + 0.405560u 0.352605
a
7
=
5.54874u
19
2.01949u
18
+ ··· + 11.7767u + 4.86805
u
3
+ u
a
5
=
2.61627u
19
+ 1.20642u
18
+ ··· 2.88059u 2.71566
0.925452u
19
+ 0.450391u
18
+ ··· 0.526847u 0.438917
a
6
=
4.70894u
19
+ 2.57997u
18
+ ··· 7.97120u 3.57806
u
a
2
=
2.57997u
19
+ 0.839802u
18
+ ··· 5.83982u 1.35447
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
201044
3105771
u
19
4918603
3105771
u
18
+ ···
11843897
1035257
u +
24068461
6211542
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
4(4u
20
28u
19
+ ··· 448u + 73)
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
2(2u
20
+ 11u
18
+ ··· + 4u + 1)
c
4
, c
10
(u
10
+ 2u
9
+ u
8
2u
7
3u
6
+ 2u
4
+ 2u
3
3u
2
2u 2)
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
16(16y
20
8y
19
+ ··· + 42678y + 5329)
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
4(4y
20
+ 44y
19
+ ··· 6y + 1)
c
4
, c
10
(y
10
2y
9
+ 3y
8
6y
7
y
6
6y
5
+ 10y
4
4y
3
+ 9y
2
+ 8y + 4)
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.863041 + 0.424455I
a = 0.485394 + 0.775205I
b = 0.244227 0.191588I
1.77310 + 4.32568I 2.37801 5.30660I
u = 0.863041 0.424455I
a = 0.485394 0.775205I
b = 0.244227 + 0.191588I
1.77310 4.32568I 2.37801 + 5.30660I
u = 0.532247 + 0.733699I
a = 1.44676 + 0.95061I
b = 1.13636
3.96232 2.14246 + 0.I
u = 0.532247 0.733699I
a = 1.44676 0.95061I
b = 1.13636
3.96232 2.14246 + 0.I
u = 0.854424 + 0.268587I
a = 0.30663 + 1.50788I
b = 0.560140 + 0.410838I
4.52678 8.23619I 1.62263 + 8.93292I
u = 0.854424 0.268587I
a = 0.30663 1.50788I
b = 0.560140 0.410838I
4.52678 + 8.23619I 1.62263 8.93292I
u = 0.294566 + 0.835743I
a = 2.23987 0.62703I
b = 3.01887
7.15291 10.64039 + 0.I
u = 0.294566 0.835743I
a = 2.23987 + 0.62703I
b = 3.01887
7.15291 10.64039 + 0.I
u = 0.219333 + 1.144070I
a = 0.253117 + 0.850599I
b = 0.244227 + 0.191588I
1.77310 4.32568I 2.37801 + 5.30660I
u = 0.219333 1.144070I
a = 0.253117 0.850599I
b = 0.244227 0.191588I
1.77310 + 4.32568I 2.37801 5.30660I
27
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.482255 + 0.664266I
a = 0.071592 + 0.163124I
b = 0.234632 + 0.628244I
0.97046 + 1.97408I 9.55166 2.43496I
u = 0.482255 0.664266I
a = 0.071592 0.163124I
b = 0.234632 0.628244I
0.97046 1.97408I 9.55166 + 2.43496I
u = 0.365634 + 1.127630I
a = 1.144170 + 0.105482I
b = 2.64003 0.02134I
10.4971 10.3444I 5.80333 + 10.34256I
u = 0.365634 1.127630I
a = 1.144170 0.105482I
b = 2.64003 + 0.02134I
10.4971 + 10.3444I 5.80333 10.34256I
u = 0.445937 + 1.170140I
a = 0.116733 0.150369I
b = 0.560140 + 0.410838I
4.52678 8.23619I 1.62263 + 8.93292I
u = 0.445937 1.170140I
a = 0.116733 + 0.150369I
b = 0.560140 0.410838I
4.52678 + 8.23619I 1.62263 8.93292I
u = 0.387590 + 0.116004I
a = 0.43654 + 2.54296I
b = 0.234632 + 0.628244I
0.97046 + 1.97408I 9.55166 2.43496I
u = 0.387590 0.116004I
a = 0.43654 2.54296I
b = 0.234632 0.628244I
0.97046 1.97408I 9.55166 + 2.43496I
u = 0.68994 + 1.64040I
a = 1.97628 + 0.07761I
b = 2.64003 + 0.02134I
10.4971 + 10.3444I 5.80333 10.34256I
u = 0.68994 1.64040I
a = 1.97628 0.07761I
b = 2.64003 0.02134I
10.4971 10.3444I 5.80333 + 10.34256I
28
VI. I
u
6
= h2u
6
a + 5u
6
+ · · · a + 2, u
6
a u
5
a + · · · + a
2
+ 1, u
7
+ u
6
+
4u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
a
1
3
u
6
a
5
6
u
6
+ ··· +
1
6
a
1
3
a
12
=
u
u
a
9
=
1
6
u
6
a +
2
3
u
6
+ ··· +
7
6
a +
1
6
1
6
u
6
a
1
6
u
6
+ ··· +
1
3
a
1
6
a
1
=
1
6
u
6
a +
1
3
u
6
+ ···
7
6
a +
5
6
1
2
u
6
a + u
6
+ ···
1
2
a +
1
2
a
10
=
u
6
a u
5
a 3u
4
a 2u
3
a 2u
2
a au + a
u
6
a u
5
a 3u
4
a 2u
3
a 2u
2
a au
a
7
=
2
3
u
6
a +
1
6
u
6
+ ··· +
13
6
a
1
3
1
2
u
6
a
1
2
u
6
+ ··· + a
1
2
a
5
=
1
6
u
6
a
1
6
u
6
+ ··· +
4
3
a +
5
6
1
3
u
6
a +
1
6
u
6
+ ··· +
1
6
a
4
3
a
6
=
1
6
u
6
a
1
3
u
6
+ ··· +
7
6
a +
1
6
1
6
u
6
a
1
6
u
6
+ ··· +
1
3
a
7
6
a
2
=
1
2
u
6
a
1
2
u
6
+ ··· a +
1
2
1
3
u
6
a +
1
3
u
6
+ ···
2
3
a +
1
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
10u
5
13u
4
32u
3
22u
2
29u 16
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
14
u
13
+ ··· 6u + 1
c
2
, c
8
u
14
+ 7u
13
+ ··· + 20u + 4
c
3
, c
9
(u
7
+ u
6
+ 4u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ u + 1)
2
c
5
, c
11
(u
7
u
6
+ 4u
5
3u
4
+ 5u
3
3u
2
+ u 1)
2
c
6
, c
12
u
14
7u
13
+ ··· 20u + 4
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
14
+ 7y
13
+ ··· 6y + 1
c
2
, c
6
, c
8
c
12
y
14
+ 3y
13
+ ··· + 16y + 16
c
3
, c
5
, c
9
c
11
(y
7
+ 7y
6
+ 20y
5
+ 27y
4
+ 13y
3
5y
2
5y 1)
2
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.727632
a = 0.55098 + 1.42676I
b = 0.190731 0.051917I
1.45874 3.88000
u = 0.727632
a = 0.55098 1.42676I
b = 0.190731 + 0.051917I
1.45874 3.88000
u = 0.181669 + 1.341540I
a = 0.102984 + 0.460514I
b = 0.021966 0.804617I
5.18918 + 0.24371I 8.52695 + 1.31812I
u = 0.181669 + 1.341540I
a = 1.38378 1.07006I
b = 2.13249 1.12742I
5.18918 + 0.24371I 8.52695 + 1.31812I
u = 0.181669 1.341540I
a = 0.102984 0.460514I
b = 0.021966 + 0.804617I
5.18918 0.24371I 8.52695 1.31812I
u = 0.181669 1.341540I
a = 1.38378 + 1.07006I
b = 2.13249 + 1.12742I
5.18918 0.24371I 8.52695 1.31812I
u = 0.111545 + 0.598906I
a = 0.098390 0.225904I
b = 0.208665 1.320170I
0.76719 + 2.52853I 9.7693 13.5452I
u = 0.111545 + 0.598906I
a = 1.31371 + 1.24073I
b = 0.148089 + 0.421187I
0.76719 + 2.52853I 9.7693 13.5452I
u = 0.111545 0.598906I
a = 0.098390 + 0.225904I
b = 0.208665 + 1.320170I
0.76719 2.52853I 9.7693 + 13.5452I
u = 0.111545 0.598906I
a = 1.31371 1.24073I
b = 0.148089 0.421187I
0.76719 2.52853I 9.7693 + 13.5452I
32
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.42940 + 1.35504I
a = 1.291350 + 0.284587I
b = 2.47211 + 0.16468I
9.65304 8.50275I 4.64372 + 5.74713I
u = 0.42940 + 1.35504I
a = 0.933270 0.968989I
b = 1.53514 0.86559I
9.65304 8.50275I 4.64372 + 5.74713I
u = 0.42940 1.35504I
a = 1.291350 0.284587I
b = 2.47211 0.16468I
9.65304 + 8.50275I 4.64372 5.74713I
u = 0.42940 1.35504I
a = 0.933270 + 0.968989I
b = 1.53514 + 0.86559I
9.65304 + 8.50275I 4.64372 5.74713I
33
VII. I
u
7
= h177u
13
1117u
12
+ · · · + 52b 1064, 296u
13
1867u
12
+ · · · +
52a 1718, u
14
7u
13
+ · · · 20u + 4i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
5.69231u
13
+ 35.9038u
12
+ ··· 118.846u + 33.0385
3.40385u
13
+ 21.4808u
12
+ ··· 73.0385u + 20.4615
a
12
=
u
u
a
9
=
4.69231u
13
+ 29.5577u
12
+ ··· 96.0769u + 26.6538
2.40385u
13
+ 15.1346u
12
+ ··· 50.2692u + 14.0769
a
1
=
1.21154u
13
8.11538u
12
+ ··· + 27u 7.57692
0.480769u
13
3.51923u
12
+ ··· + 14.1923u 3.38462
a
10
=
1.13462u
13
+ 7.46154u
12
+ ··· 25.4231u + 6.19231
0.173077u
13
+ 1.09615u
12
+ ··· 10.4231u + 2.61538
a
7
=
4.75000u
13
+ 29.8846u
12
+ ··· 99.0769u + 28.0385
1.01923u
13
+ 6.21154u
12
+ ··· 18.6538u + 5.53846
a
5
=
1.67308u
13
+ 10.0769u
12
+ ··· 25.2692u + 7.03846
0.403846u
13
+ 2.40385u
12
+ ··· 1.42308u + 0.153846
a
6
=
5.11538u
13
+ 32.4038u
12
+ ··· 105u + 29.2692
1.59615u
13
+ 10.1731u
12
+ ··· 33.1923u + 9.15385
a
2
=
0.846154u
13
5.44231u
12
+ ··· + 10.3462u 2.73077
0.519231u
13
3.55769u
12
+ ··· + 10.4231u 2.92308
(ii) Obstruction class = 1
(iii) Cusp Shapes =
454
13
u
13
+
2870
13
u
12
9845
13
u
11
+
23675
13
u
10
42801
13
u
9
+
62428
13
u
8
76369
13
u
7
+
78835
13
u
6
71328
13
u
5
+
55147
13
u
4
37555
13
u
3
+
20790
13
u
2
9494
13
u +
2552
13
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
14
u
13
+ ··· 6u + 1
c
2
, c
8
(u
7
u
6
+ 4u
5
3u
4
+ 5u
3
3u
2
+ u 1)
2
c
3
, c
9
u
14
7u
13
+ ··· 20u + 4
c
5
, c
11
u
14
+ 7u
13
+ ··· + 20u + 4
c
6
, c
12
(u
7
+ u
6
+ 4u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ u + 1)
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
14
+ 7y
13
+ ··· 6y + 1
c
2
, c
6
, c
8
c
12
(y
7
+ 7y
6
+ 20y
5
+ 27y
4
+ 13y
3
5y
2
5y 1)
2
c
3
, c
5
, c
9
c
11
y
14
+ 3y
13
+ ··· + 16y + 16
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.059064 + 1.014840I
a = 0.80465 + 1.22915I
b = 2.13249 + 1.12742I
5.18918 0.24371I 8.52695 1.31812I
u = 0.059064 1.014840I
a = 0.80465 1.22915I
b = 2.13249 1.12742I
5.18918 + 0.24371I 8.52695 + 1.31812I
u = 0.653886 + 0.784063I
a = 0.372401 + 0.129379I
b = 0.148089 + 0.421187I
0.76719 + 2.52853I 9.7693 13.5452I
u = 0.653886 0.784063I
a = 0.372401 0.129379I
b = 0.148089 0.421187I
0.76719 2.52853I 9.7693 + 13.5452I
u = 0.262126 + 1.075930I
a = 0.346261 0.690308I
b = 0.190731 0.051917I
1.45874 3.87999 + 0.I
u = 0.262126 1.075930I
a = 0.346261 + 0.690308I
b = 0.190731 + 0.051917I
1.45874 3.87999 + 0.I
u = 0.398553 + 0.771164I
a = 0.078706 0.588337I
b = 1.53514 0.86559I
9.65304 8.50275I 4.64372 + 5.74713I
u = 0.398553 0.771164I
a = 0.078706 + 0.588337I
b = 1.53514 + 0.86559I
9.65304 + 8.50275I 4.64372 5.74713I
u = 0.689615 + 0.061837I
a = 0.02905 2.16732I
b = 0.208665 1.320170I
0.76719 + 2.52853I 9.7693 13.5452I
u = 0.689615 0.061837I
a = 0.02905 + 2.16732I
b = 0.208665 + 1.320170I
0.76719 2.52853I 9.7693 + 13.5452I
37
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.66949 + 1.54849I
a = 1.63384 0.07956I
b = 2.47211 0.16468I
9.65304 + 8.50275I 4.64372 5.74713I
u = 0.66949 1.54849I
a = 1.63384 + 0.07956I
b = 2.47211 + 0.16468I
9.65304 8.50275I 4.64372 + 5.74713I
u = 1.68250 + 0.33852I
a = 0.07238 + 1.59182I
b = 0.021966 + 0.804617I
5.18918 0.24371I 8.52695 1.31812I
u = 1.68250 0.33852I
a = 0.07238 1.59182I
b = 0.021966 0.804617I
5.18918 + 0.24371I 8.52695 + 1.31812I
38
VIII. I
u
8
= hb a 1, a
2
+ au a + u, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u + 1
a
8
=
a
a + 1
a
12
=
u
u
a
9
=
a u 1
a u
a
1
=
au + u
au
a
10
=
au a u + 1
au
a
7
=
a + 2
u + 1
a
5
=
2au + a 2u 2
au + 1
a
6
=
au + a 2u 3
u
a
2
=
a + u 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16u + 6
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
u
3
u
2
2u + 4
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(u
2
+ u + 1)
2
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
3y
3
+ 5y
2
12y + 16
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(y
2
+ y + 1)
2
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.395644 + 0.228425I
b = 0.604356 + 0.228425I
4.93480 8.11953I 2.00000 + 13.85641I
u = 0.500000 + 0.866025I
a = 1.89564 1.09445I
b = 2.89564 1.09445I
4.93480 8.11953I 2.00000 + 13.85641I
u = 0.500000 0.866025I
a = 0.395644 0.228425I
b = 0.604356 0.228425I
4.93480 + 8.11953I 2.00000 13.85641I
u = 0.500000 0.866025I
a = 1.89564 + 1.09445I
b = 2.89564 + 1.09445I
4.93480 + 8.11953I 2.00000 13.85641I
42
IX. I
u
9
= h−2u
3
4u
2
+ 4b 3u + 1 , 2u
3
+ 2a + u 3 , 2u
4
+ 2u
3
+ 3u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
u
3
1
2
u +
3
2
1
2
u
3
+ u
2
+
3
4
u
1
4
a
12
=
u
u
a
9
=
3
2
u
3
u
2
5
4
u +
7
4
0
a
1
=
u
3
+ 2u
2
+
7
2
u +
3
2
1
2
u
3
+
3
4
u
3
4
a
10
=
2u
3
u 3
1
2
u
3
u
2
3
4
u +
1
4
a
7
=
u
3
+
1
2
u
7
2
u
3
u
a
5
=
4u
3
+ 6u
2
+ 6u 1
u
a
6
=
7
2
u
3
+ 4u
2
+
13
4
u
13
4
u
a
2
=
1
2
u
3
+ 2u
2
+
13
4
u +
11
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
4u
2
3u
5
2
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
4(4u
4
15u
2
2u + 17)
c
2
, c
5
, c
8
c
11
2(2u
4
2u
3
+ 3u
2
+ 1)
c
3
, c
6
, c
9
c
12
2(2u
4
+ 2u
3
+ 3u
2
+ 1)
c
4
, c
10
(u
2
2u + 2)
2
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
16(16y
4
120y
3
+ 361y
2
514y + 289)
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
4(4y
4
+ 8y
3
+ 13y
2
+ 6y + 1)
c
4
, c
10
(y
2
+ 4)
2
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.637550 + 1.056350I
a = 0.056347 0.637550I
b = 0.500000 0.500000I
4.93480 7.32772I 1.50000 + 2.00000I
u = 0.637550 1.056350I
a = 0.056347 + 0.637550I
b = 0.500000 + 0.500000I
4.93480 + 7.32772I 1.50000 2.00000I
u = 0.137550 + 0.556347I
a = 1.55635 0.13755I
b = 0.500000 + 0.500000I
4.93480 + 7.32772I 1.50000 2.00000I
u = 0.137550 0.556347I
a = 1.55635 + 0.13755I
b = 0.500000 0.500000I
4.93480 7.32772I 1.50000 + 2.00000I
46
X.
I
u
10
= h−2u
3
+8u
2
+4b+13u+7, 2u
3
+8u
2
+4a+13u+11, 2u
4
+2u
3
+3u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
1
2
u
3
2u
2
13
4
u
11
4
1
2
u
3
2u
2
13
4
u
7
4
a
12
=
u
u
a
9
=
1
2
u
3
u
2
13
4
u
11
4
1
2
u
3
u
2
13
4
u
7
4
a
1
=
5
2
u
3
+ 4u
2
+
15
4
u +
1
4
5
2
u
3
+ 4u
2
+
11
4
u +
1
4
a
10
=
7
2
u
3
7
2
u
2
23
4
u +
1
2
2u
3
3
2
u
2
7
2
u +
5
4
a
7
=
9
4
u
3
+
5
2
u
2
+
31
8
u
1
8
7
4
u
3
+
3
2
u
2
+
17
8
u
7
8
a
5
=
13
4
u
3
11
2
u
2
43
8
u
3
8
11
4
u
3
9
2
u
2
29
8
u +
3
8
a
6
=
1
2
u
3
+ u
2
+
7
4
u +
3
4
1
2
u
3
+ u
2
+
7
4
u +
3
4
a
2
=
3
2
u
3
+ 2u
2
+
9
4
u +
3
4
3
2
u
3
+ 2u
2
+
9
4
u
1
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
4u
2
3u
5
2
47
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
2u + 2)
2
c
2
, c
5
, c
8
c
11
2(2u
4
2u
3
+ 3u
2
+ 1)
c
3
, c
6
, c
9
c
12
2(2u
4
+ 2u
3
+ 3u
2
+ 1)
c
4
, c
10
4(4u
4
15u
2
2u + 17)
48
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
+ 4)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
4(4y
4
+ 8y
3
+ 13y
2
+ 6y + 1)
c
4
, c
10
16(16y
4
120y
3
+ 361y
2
514y + 289)
49
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.637550 + 1.056350I
a = 1.67840 0.68454I
b = 2.67840 0.68454I
4.93480 7.32772I 1.50000 + 2.00000I
u = 0.637550 1.056350I
a = 1.67840 + 0.68454I
b = 2.67840 + 0.68454I
4.93480 + 7.32772I 1.50000 2.00000I
u = 0.137550 + 0.556347I
a = 2.67840 2.18454I
b = 1.67840 2.18454I
4.93480 + 7.32772I 1.50000 2.00000I
u = 0.137550 0.556347I
a = 2.67840 + 2.18454I
b = 1.67840 + 2.18454I
4.93480 7.32772I 1.50000 + 2.00000I
50
XI. I
u
11
=
hu
11
2u
10
+· · ·+2b2, 5u
11
11u
10
+· · ·+4a16, u
12
3u
11
+· · ·+2u
3
+4i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
5
4
u
11
+
11
4
u
10
+ ··· + 2u + 4
1
2
u
11
+ u
10
+ ··· + u + 1
a
12
=
u
u
a
9
=
3
4
u
11
+
9
4
u
10
+ ··· u + 2
1
2
u
10
1
2
u
9
+ ··· 2u 1
a
1
=
1
2
u
11
u
10
+ ··· u 1
1
2
u
7
+ u
6
3
2
u
5
+ u
4
1
2
u
3
+ u
a
10
=
3
4
u
11
+
5
4
u
10
+ ··· + 3u + 3
1
2
u
11
3
2
u
10
+ ··· + u 1
a
7
=
1
2
u
10
1
2
u
9
+ ··· 3u 1
1
2
u
11
+ u
10
+ ··· +
3
2
u
3
u
a
5
=
1
4
u
11
+
3
4
u
10
+ ··· + 3u + 4
1
2
u
10
2u
9
+ ··· + 2u + 3
a
6
=
1
4
u
11
+
1
4
u
10
+ ··· + u + 1
1
2
u
11
+ u
10
+ ··· + 3u + 3
a
2
=
1
2
u
6
+ u
5
3
2
u
4
+ u
3
1
2
u
2
+ 1
1
2
u
11
u
10
+ ··· u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 8u
10
24u
9
+ 27u
8
42u
7
+ 25u
6
14u
5
+ u
4
+ 22u
3
+ 6u
2
+ 8u + 10
51
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
6
+ u
5
2u
4
3u
3
+ 2u
2
+ 3u + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
12
3u
11
+ 8u
10
13u
9
+ 18u
8
19u
7
+ 13u
6
8u
5
2u
4
+ 2u
3
+ 4
52
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
6
5y
5
+ 14y
4
21y
3
+ 18y
2
5y + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
12
+ 7y
11
+ ··· 16y
2
+ 16
53
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 0.100452 + 1.034960I
a = 0.202900 0.823189I
b = 0.530318 0.263992I
2.48820 + 1.50089I 2.33482 4.37930I
u = 0.100452 1.034960I
a = 0.202900 + 0.823189I
b = 0.530318 + 0.263992I
2.48820 1.50089I 2.33482 + 4.37930I
u = 1.131900 + 0.019003I
a = 0.04695 1.79866I
b = 0.247955 0.704157I
5.26528 + 7.27175I 1.11360 6.02948I
u = 1.131900 0.019003I
a = 0.04695 + 1.79866I
b = 0.247955 + 0.704157I
5.26528 7.27175I 1.11360 + 6.02948I
u = 0.248729 + 1.238530I
a = 1.062330 + 0.867734I
b = 2.21764 + 0.44171I
11.98570 5.80683I 6.55158 + 2.46615I
u = 0.248729 1.238530I
a = 1.062330 0.867734I
b = 2.21764 0.44171I
11.98570 + 5.80683I 6.55158 2.46615I
u = 0.313008 + 1.244470I
a = 0.018436 + 0.147658I
b = 0.247955 0.704157I
5.26528 + 7.27175I 1.11360 6.02948I
u = 0.313008 1.244470I
a = 0.018436 0.147658I
b = 0.247955 + 0.704157I
5.26528 7.27175I 1.11360 + 6.02948I
u = 0.611635 + 0.282691I
a = 0.249427 1.067740I
b = 0.530318 + 0.263992I
2.48820 1.50089I 2.33482 + 4.37930I
u = 0.611635 0.282691I
a = 0.249427 + 1.067740I
b = 0.530318 0.263992I
2.48820 + 1.50089I 2.33482 4.37930I
54
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 0.81501 + 1.32491I
a = 1.45568 0.16073I
b = 2.21764 0.44171I
11.98570 + 5.80683I 6.55158 2.46615I
u = 0.81501 1.32491I
a = 1.45568 + 0.16073I
b = 2.21764 + 0.44171I
11.98570 5.80683I 6.55158 + 2.46615I
55
XII.
I
u
12
= h9.73 × 10
5
au
11
+ 1.11 × 10
6
u
11
+ · · · + 2.89 × 10
7
a 4.84 × 10
7
, 2.10 ×
10
6
au
11
+1.94×10
6
u
11
+· · ·+4.27×10
7
a+1.70×10
7
, u
12
+4u
11
+· · ·+52u+17i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
a
0.0499024au
11
0.0569073u
11
+ ··· 1.47945a + 2.47982
a
12
=
u
u
a
9
=
0.0222156au
11
0.0306909u
11
+ ··· + 1.34178a 3.88802
0.0276868au
11
0.0875982u
11
+ ··· 1.13767a 1.40820
a
1
=
0.0255248au
11
+ 0.180008u
11
+ ··· + 2.61958a + 3.43610
0.0961964au
11
+ 0.157732u
11
+ ··· 0.610904a + 3.97712
a
10
=
0.240086au
11
0.00795682u
11
+ ··· 7.82112a 5.40507
0.269684au
11
+ 0.194341u
11
+ ··· 4.35659a + 3.23725
a
7
=
0.00536180au
11
0.0898213u
11
+ ··· 5.46984a 5.37452
0.0396490au
11
0.0367192u
11
+ ··· 3.23173a 1.66928
a
5
=
0.117320au
11
0.00298672u
11
+ ··· + 2.31111a 0.617584
0.257941au
11
0.0450108u
11
+ ··· + 1.14812a + 2.23811
a
6
=
0.0870267au
11
+ 0.233711u
11
+ ··· 0.177121a 3.05750
0.0201047au
11
0.0255248u
11
+ ··· + 0.848341a + 2.61958
a
2
=
0.0359355au
11
0.0243270u
11
+ ··· + 3.05350a 2.36536
0.147896au
11
+ 0.00387902u
11
+ ··· + 1.20142a + 0.110022
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3584
18491
u
11
+
23252
18491
u
10
+
176
41
u
9
+
208520
18491
u
8
+
424496
18491
u
7
+
769548
18491
u
6
+
1073920
18491
u
5
+
1399512
18491
u
4
+
1275424
18491
u
3
+
1084484
18491
u
2
+
519328
18491
u +
102714
18491
56
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
12
+ 4u
11
+ ··· 36u + 7)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(u
12
+ 4u
11
+ ··· + 52u + 17)
2
57
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
12
24y
11
+ ··· 652y + 49)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(y
12
+ 12y
11
+ ··· + 1036y + 289)
2
58
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.056683 + 0.913161I
a = 0.505160 0.428841I
b = 2.00428 + 1.18705I
4.79131 9.01951 + 0.I
u = 0.056683 + 0.913161I
a = 4.39644 0.12367I
b = 3.40412
4.79131 9.01951 + 0.I
u = 0.056683 0.913161I
a = 0.505160 + 0.428841I
b = 2.00428 1.18705I
4.79131 9.01951 + 0.I
u = 0.056683 0.913161I
a = 4.39644 + 0.12367I
b = 3.40412
4.79131 9.01951 + 0.I
u = 0.603528 + 0.422967I
a = 1.191060 + 0.457673I
b = 0.254482 1.035470I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.603528 + 0.422967I
a = 0.04338 1.85087I
b = 0.389899 + 0.085684I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.603528 0.422967I
a = 1.191060 0.457673I
b = 0.254482 + 1.035470I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.603528 0.422967I
a = 0.04338 + 1.85087I
b = 0.389899 0.085684I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.066299 + 1.297300I
a = 1.254580 + 0.220823I
b = 2.43003 0.13698I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.066299 + 1.297300I
a = 0.55596 1.51610I
b = 0.254482 1.035470I
8.29642 + 6.59895I 2.49024 2.97945I
59
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.066299 1.297300I
a = 1.254580 0.220823I
b = 2.43003 + 0.13698I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.066299 1.297300I
a = 0.55596 + 1.51610I
b = 0.254482 + 1.035470I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.55760 + 1.35203I
a = 0.279872 0.577449I
b = 0.389899 0.085684I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.55760 + 1.35203I
a = 1.48032 + 0.17170I
b = 2.57057 + 0.22037I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.55760 1.35203I
a = 0.279872 + 0.577449I
b = 0.389899 + 0.085684I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.55760 1.35203I
a = 1.48032 0.17170I
b = 2.57057 0.22037I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.54211 + 1.50118I
a = 1.65517 0.26125I
b = 2.57057 0.22037I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.54211 + 1.50118I
a = 1.65143 0.37398I
b = 2.43003 0.13698I
8.29642 + 6.59895I 2.49024 2.97945I
u = 0.54211 1.50118I
a = 1.65517 + 0.26125I
b = 2.57057 + 0.22037I
8.29642 6.59895I 2.49024 + 2.97945I
u = 0.54211 1.50118I
a = 1.65143 + 0.37398I
b = 2.43003 + 0.13698I
8.29642 6.59895I 2.49024 + 2.97945I
60
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 1.39060 + 1.46053I
a = 0.223311 0.998797I
b = 0.174283
4.79131 9.01951 + 0.I
u = 1.39060 + 1.46053I
a = 1.69572 1.51965I
b = 2.00428 1.18705I
4.79131 9.01951 + 0.I
u = 1.39060 1.46053I
a = 0.223311 + 0.998797I
b = 0.174283
4.79131 9.01951 + 0.I
u = 1.39060 1.46053I
a = 1.69572 + 1.51965I
b = 2.00428 + 1.18705I
4.79131 9.01951 + 0.I
61
XIII. I
u
13
= hu
2
+ b, u
2
+ a + 1, u
4
u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
8
=
u
2
1
u
2
a
12
=
u
u
a
9
=
1
0
a
1
=
u
3
+ 2u
u
3
+ u
a
10
=
1
u
2
a
7
=
u
3
2u
u
3
u
a
5
=
0
u
a
6
=
u
u
a
2
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 8u
2
24u + 12
62
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
+ u
3
+ u
2
+ 1
c
2
, c
5
, c
8
c
11
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
3
, c
6
, c
9
c
12
u
4
u
3
+ 3u
2
2u + 1
63
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
64
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.899232 0.400532I
b = 0.100768 0.400532I
0.42201 + 2.83021I 3.65348 9.81749I
u = 0.395123 0.506844I
a = 0.899232 + 0.400532I
b = 0.100768 + 0.400532I
0.42201 2.83021I 3.65348 + 9.81749I
u = 0.10488 + 1.55249I
a = 1.39923 0.32564I
b = 2.39923 0.32564I
13.5815 + 6.3279I 3.65348 5.12960I
u = 0.10488 1.55249I
a = 1.39923 + 0.32564I
b = 2.39923 + 0.32564I
13.5815 6.3279I 3.65348 + 5.12960I
65
XIV. I
u
14
= hb a u, a
2
+ 2au + a 2, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u + 1
a
8
=
a
a + u
a
12
=
u
u
a
9
=
a + 1
a + u + 1
a
1
=
au + a + u
au + a + u 1
a
10
=
au a 2u 1
au
a
7
=
au u
u
a
5
=
2au + a + 2u
au + u
a
6
=
au + a + u
u + 1
a
2
=
au
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
66
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
2
+ u 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(u
2
+ u + 1)
2
67
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
2
3y + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(y
2
+ y + 1)
2
68
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
14
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.118030 0.866030I
b = 0.618034
4.93480 2.00000
u = 0.500000 + 0.866025I
a = 1.118030 0.866030I
b = 1.61803
4.93480 2.00000
u = 0.500000 0.866025I
a = 1.118030 + 0.866030I
b = 0.618034
4.93480 2.00000
u = 0.500000 0.866025I
a = 1.118030 + 0.866030I
b = 1.61803
4.93480 2.00000
69
XV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
16(u
2
2u + 2)
2
(u
2
+ u 1)
2
(u
4
u
3
+ ··· 2u + 4)(u
4
+ u
3
+ u
2
+ 1)
· (4u
4
15u
2
2u + 17)(u
6
+ u
5
2u
4
3u
3
+ 2u
2
+ 3u + 1)
2
· (u
8
2u
7
u
6
+ 6u
5
u
4
6u
3
+ 8u
2
4u + 1)
· (u
10
+ 2u
9
+ u
8
2u
7
3u
6
+ 2u
4
+ 2u
3
3u
2
2u 2)
2
· ((u
12
+ 4u
11
+ ··· 36u + 7)
2
)(u
14
u
13
+ ··· 6u + 1)
2
· (4u
20
28u
19
+ ··· 448u + 73)(u
30
2u
29
+ ··· + 22u + 1)
2
c
2
, c
5
, c
8
c
11
16(u
2
+ u + 1)
4
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(2u
4
2u
3
+ 3u
2
+ 1)
2
· (u
7
u
6
+ 4u
5
3u
4
+ 5u
3
3u
2
+ u 1)
2
· (u
8
2u
7
+ 5u
6
6u
5
+ 9u
4
10u
3
+ 8u
2
4u + 1)
· (u
12
3u
11
+ 8u
10
13u
9
+ 18u
8
19u
7
+ 13u
6
8u
5
2u
4
+ 2u
3
+ 4)
· ((u
12
+ 4u
11
+ ··· + 52u + 17)
2
)(u
14
+ 7u
13
+ ··· + 20u + 4)
· ((u
15
+ 2u
14
+ ··· 2u 2)
2
)(2u
20
+ 11u
18
+ ··· + 4u + 1)
2
· (u
30
8u
29
+ ··· 148u + 43)
c
3
, c
6
, c
9
c
12
16(u
2
+ u + 1)
4
(u
4
u
3
+ 3u
2
2u + 1)(2u
4
+ 2u
3
+ 3u
2
+ 1)
2
· (u
7
+ u
6
+ 4u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ u + 1)
2
· (u
8
2u
7
+ 5u
6
6u
5
+ 9u
4
10u
3
+ 8u
2
4u + 1)
· (u
12
3u
11
+ 8u
10
13u
9
+ 18u
8
19u
7
+ 13u
6
8u
5
2u
4
+ 2u
3
+ 4)
· ((u
12
+ 4u
11
+ ··· + 52u + 17)
2
)(u
14
7u
13
+ ··· 20u + 4)
· ((u
15
+ 2u
14
+ ··· 2u 2)
2
)(2u
20
+ 11u
18
+ ··· + 4u + 1)
2
· (u
30
8u
29
+ ··· 148u + 43)
70
XVI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
256(y
2
+ 4)
2
(y
2
3y + 1)
2
(y
4
3y
3
+ 5y
2
12y + 16)
· (y
4
+ y
3
+ 3y
2
+ 2y + 1)(16y
4
120y
3
+ 361y
2
514y + 289)
· (y
6
5y
5
+ 14y
4
21y
3
+ 18y
2
5y + 1)
2
· (y
8
6y
7
+ 23y
6
42y
5
+ 43y
4
6y
3
+ 14y
2
+ 1)
· (y
10
2y
9
+ 3y
8
6y
7
y
6
6y
5
+ 10y
4
4y
3
+ 9y
2
+ 8y + 4)
2
· ((y
12
24y
11
+ ··· 652y + 49)
2
)(y
14
+ 7y
13
+ ··· 6y + 1)
2
· (16y
20
8y
19
+ ··· + 42678y + 5329)
· (y
30
18y
29
+ ··· 206y + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
256(y
2
+ y + 1)
4
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (4y
4
+ 8y
3
+ 13y
2
+ 6y + 1)
2
· (y
7
+ 7y
6
+ 20y
5
+ 27y
4
+ 13y
3
5y
2
5y 1)
2
· (y
8
+ 6y
7
+ 19y
6
+ 30y
5
+ 27y
4
+ 6y
3
+ 2y
2
+ 1)
· (y
12
+ 7y
11
+ ··· 16y
2
+ 16)(y
12
+ 12y
11
+ ··· + 1036y + 289)
2
· (y
14
+ 3y
13
+ ··· + 16y + 16)(y
15
+ 16y
14
+ ··· 32y 4)
2
· ((4y
20
+ 44y
19
+ ··· 6y + 1)
2
)(y
30
+ 16y
29
+ ··· + 1144y + 1849)
71