12a
0984
(K12a
0984
)
A knot diagram
1
Linearized knot diagam
4 6 11 9 10 3 12 1 5 2 7 8
Solving Sequence
7,12
8
1,4
2 9 5 11 3 6 10
c
7
c
12
c
1
c
8
c
4
c
11
c
3
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.50090 × 10
58
u
64
+ 1.26323 × 10
59
u
63
+ ··· + 2.01207 × 10
58
b 1.19889 × 10
59
,
8.05777 × 10
57
u
64
9.65753 × 10
57
u
63
+ ··· + 2.01207 × 10
58
a + 2.45376 × 10
59
, u
65
u
64
+ ··· + 15u + 1i
I
u
2
= h−u
12
+ 8u
10
u
9
24u
8
+ 6u
7
+ 34u
6
12u
5
24u
4
+ 9u
3
+ 8u
2
+ b 2u 1,
u
13
10u
11
+ 2u
10
+ 39u
9
15u
8
74u
7
+ 40u
6
+ 70u
5
46u
4
31u
3
+ 24u
2
+ a + 5u 6,
u
14
10u
12
+ u
11
+ 39u
10
8u
9
75u
8
+ 23u
7
+ 75u
6
29u
5
39u
4
+ 17u
3
+ 10u
2
5u 1i
* 2 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.50×10
58
u
64
+1.26×10
59
u
63
+· · ·+2.01×10
58
b1.20×10
59
, 8.06×
10
57
u
64
9.66×10
57
u
63
+· · ·+2.01×10
58
a+2.45×10
59
, u
65
u
64
+· · ·+15u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.400471u
64
+ 0.479979u
63
+ ··· 6.74840u 12.1952
2.73394u
64
6.27826u
63
+ ··· + 62.2065u + 5.95850
a
2
=
1.62795u
64
+ 0.503503u
63
+ ··· 247.503u 7.75301
1.78903u
64
2.08762u
63
+ ··· + 55.9693u + 3.12673
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
0.863498u
64
0.649790u
63
+ ··· 2.52825u 10.4084
1.54027u
64
4.04431u
63
+ ··· + 38.9849u + 4.28279
a
11
=
u
u
a
3
=
1.78938u
64
2.87215u
63
+ ··· + 30.0752u 9.53132
1.34504u
64
2.92613u
63
+ ··· + 25.3829u + 3.29464
a
6
=
0.633467u
64
+ 0.762597u
63
+ ··· + 99.1976u 8.80979
0.359097u
64
0.374796u
63
+ ··· 20.0580u + 0.472607
a
10
=
0.648781u
64
2.39549u
63
+ ··· + 0.850744u + 17.0104
2.20379u
64
2.48811u
63
+ ··· + 37.1721u + 0.459690
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.12410u
64
3.19508u
63
+ ··· 2.97273u + 13.0445
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
65
10u
64
+ ··· 646157u + 15851
c
2
, c
6
u
65
31u
63
+ ··· + 4u + 1
c
3
u
65
2u
64
+ ··· + 1806u 14929
c
4
, c
5
, c
9
u
65
+ 2u
64
+ ··· + 81u 1
c
7
, c
8
, c
11
c
12
u
65
+ u
64
+ ··· + 15u 1
c
10
u
65
+ 3u
64
+ ··· 18311u + 5039
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
65
+ 42y
64
+ ··· + 350419778635y 251254201
c
2
, c
6
y
65
62y
64
+ ··· 446y 1
c
3
y
65
+ 34y
64
+ ··· + 1425607182y 222875041
c
4
, c
5
, c
9
y
65
74y
64
+ ··· + 6515y 1
c
7
, c
8
, c
11
c
12
y
65
85y
64
+ ··· 125y 1
c
10
y
65
+ 27y
64
+ ··· + 94761095y 25391521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.889757 + 0.433062I
a = 0.595422 0.198986I
b = 0.281933 + 0.547527I
7.58885 + 1.40904I 0
u = 0.889757 0.433062I
a = 0.595422 + 0.198986I
b = 0.281933 0.547527I
7.58885 1.40904I 0
u = 0.935679 + 0.430142I
a = 0.133556 + 0.252790I
b = 0.002645 + 1.300830I
5.78424 + 7.60090I 0
u = 0.935679 0.430142I
a = 0.133556 0.252790I
b = 0.002645 1.300830I
5.78424 7.60090I 0
u = 0.868051 + 0.564459I
a = 0.220898 0.124404I
b = 0.568115 0.720158I
4.84341 0.52476I 0
u = 0.868051 0.564459I
a = 0.220898 + 0.124404I
b = 0.568115 + 0.720158I
4.84341 + 0.52476I 0
u = 0.157396 + 0.936252I
a = 0.718874 0.451433I
b = 0.314810 0.120327I
9.74575 + 6.14975I 0
u = 0.157396 0.936252I
a = 0.718874 + 0.451433I
b = 0.314810 + 0.120327I
9.74575 6.14975I 0
u = 0.866334 + 0.387041I
a = 0.177626 + 0.667924I
b = 0.38134 1.60962I
7.62669 5.64553I 0
u = 0.866334 0.387041I
a = 0.177626 0.667924I
b = 0.38134 + 1.60962I
7.62669 + 5.64553I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.936520 + 0.039908I
a = 1.58250 0.14580I
b = 0.084560 1.007070I
11.75260 + 2.96607I 0
u = 0.936520 0.039908I
a = 1.58250 + 0.14580I
b = 0.084560 + 1.007070I
11.75260 2.96607I 0
u = 0.891446 + 0.041272I
a = 1.76473 0.50188I
b = 1.41399 + 1.40674I
11.30310 + 2.13802I 18.7856 3.2914I
u = 0.891446 0.041272I
a = 1.76473 + 0.50188I
b = 1.41399 1.40674I
11.30310 2.13802I 18.7856 + 3.2914I
u = 0.863593 + 0.206273I
a = 0.735499 + 0.727785I
b = 0.004341 + 1.321520I
4.72318 1.99911I 16.8500 + 4.6466I
u = 0.863593 0.206273I
a = 0.735499 0.727785I
b = 0.004341 1.321520I
4.72318 + 1.99911I 16.8500 4.6466I
u = 0.825189 + 0.164350I
a = 1.109760 0.001937I
b = 0.97431 1.02822I
4.60530 + 1.62841I 19.0869 5.0351I
u = 0.825189 0.164350I
a = 1.109760 + 0.001937I
b = 0.97431 + 1.02822I
4.60530 1.62841I 19.0869 + 5.0351I
u = 0.782280 + 0.256564I
a = 0.067172 + 0.264192I
b = 0.419229 1.239770I
1.05736 + 3.42824I 9.38737 8.82437I
u = 0.782280 0.256564I
a = 0.067172 0.264192I
b = 0.419229 + 1.239770I
1.05736 3.42824I 9.38737 + 8.82437I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.049540 + 0.559169I
a = 0.0045583 0.0656234I
b = 0.073399 + 1.340640I
13.4741 11.0913I 0
u = 1.049540 0.559169I
a = 0.0045583 + 0.0656234I
b = 0.073399 1.340640I
13.4741 + 11.0913I 0
u = 1.22679
a = 0.270827
b = 0.374892
2.39981 0
u = 0.952627 + 0.791056I
a = 0.0432079 + 0.0247757I
b = 0.402011 0.728715I
12.00730 0.38636I 0
u = 0.952627 0.791056I
a = 0.0432079 0.0247757I
b = 0.402011 + 0.728715I
12.00730 + 0.38636I 0
u = 0.096388 + 0.710673I
a = 0.837011 0.685506I
b = 0.488500 0.029172I
2.61549 3.79888I 9.89337 + 6.78663I
u = 0.096388 0.710673I
a = 0.837011 + 0.685506I
b = 0.488500 + 0.029172I
2.61549 + 3.79888I 9.89337 6.78663I
u = 0.706625 + 0.004243I
a = 0.326615 + 0.075243I
b = 0.438772 + 0.728388I
1.114370 + 0.096093I 9.80971 + 0.48102I
u = 0.706625 0.004243I
a = 0.326615 0.075243I
b = 0.438772 0.728388I
1.114370 0.096093I 9.80971 0.48102I
u = 1.30205
a = 0.756337
b = 0.949659
5.71531 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.011225 + 0.631699I
a = 1.173430 + 0.684067I
b = 0.243702 + 0.396416I
4.95418 + 2.21427I 8.45324 3.11503I
u = 0.011225 0.631699I
a = 1.173430 0.684067I
b = 0.243702 0.396416I
4.95418 2.21427I 8.45324 + 3.11503I
u = 1.46845
a = 0.187024
b = 1.14204
6.49904 0
u = 0.414265
a = 3.15526
b = 0.0379566
0.0573235 19.4200
u = 0.050717 + 0.407384I
a = 0.98626 + 1.37309I
b = 0.106234 + 0.222035I
1.10170 1.06626I 0.72797 + 3.75877I
u = 0.050717 0.407384I
a = 0.98626 1.37309I
b = 0.106234 0.222035I
1.10170 + 1.06626I 0.72797 3.75877I
u = 0.002304 + 0.351380I
a = 1.95027 1.37104I
b = 0.824432 + 0.186984I
2.13526 + 0.06396I 7.70510 + 0.30032I
u = 0.002304 0.351380I
a = 1.95027 + 1.37104I
b = 0.824432 0.186984I
2.13526 0.06396I 7.70510 0.30032I
u = 0.350174
a = 0.614828
b = 0.463481
0.719899 14.9890
u = 1.65272 + 0.01145I
a = 0.47953 + 1.86610I
b = 0.77556 2.58159I
9.51546 + 0.03244I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65272 0.01145I
a = 0.47953 1.86610I
b = 0.77556 + 2.58159I
9.51546 0.03244I 0
u = 1.65709 + 0.05434I
a = 0.25689 2.19662I
b = 0.48205 + 2.85246I
9.61848 4.52679I 0
u = 1.65709 0.05434I
a = 0.25689 + 2.19662I
b = 0.48205 2.85246I
9.61848 + 4.52679I 0
u = 1.66991 + 0.04242I
a = 0.76197 1.61866I
b = 0.36741 + 2.21521I
13.41440 2.40644I 0
u = 1.66991 0.04242I
a = 0.76197 + 1.61866I
b = 0.36741 2.21521I
13.41440 + 2.40644I 0
u = 1.67767 + 0.09570I
a = 0.05955 2.48218I
b = 0.26406 + 3.07470I
16.5146 + 7.4665I 0
u = 1.67767 0.09570I
a = 0.05955 + 2.48218I
b = 0.26406 3.07470I
16.5146 7.4665I 0
u = 1.68402 + 0.05115I
a = 0.52918 + 2.34990I
b = 1.42152 3.59158I
13.74990 + 2.97652I 0
u = 1.68402 0.05115I
a = 0.52918 2.34990I
b = 1.42152 + 3.59158I
13.74990 2.97652I 0
u = 1.69185 + 0.00973I
a = 1.06345 + 1.76949I
b = 0.64856 2.29976I
18.9704 1.9445I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.69185 0.00973I
a = 1.06345 1.76949I
b = 0.64856 + 2.29976I
18.9704 + 1.9445I 0
u = 1.69453 + 0.10643I
a = 0.47342 + 1.38437I
b = 0.84199 2.02585I
16.6703 3.4851I 0
u = 1.69453 0.10643I
a = 0.47342 1.38437I
b = 0.84199 + 2.02585I
16.6703 + 3.4851I 0
u = 1.69423 + 0.11190I
a = 0.06318 + 2.21599I
b = 0.64443 3.30761I
14.9626 9.7162I 0
u = 1.69423 0.11190I
a = 0.06318 2.21599I
b = 0.64443 + 3.30761I
14.9626 + 9.7162I 0
u = 1.69496 + 0.13798I
a = 0.387962 1.341050I
b = 0.04223 + 2.01775I
13.8035 + 3.2283I 0
u = 1.69496 0.13798I
a = 0.387962 + 1.341050I
b = 0.04223 2.01775I
13.8035 3.2283I 0
u = 1.70249 + 0.00913I
a = 0.76510 1.62903I
b = 1.89492 + 2.45435I
18.3078 3.1530I 0
u = 1.70249 0.00913I
a = 0.76510 + 1.62903I
b = 1.89492 2.45435I
18.3078 + 3.1530I 0
u = 1.73019 + 0.15438I
a = 0.02330 + 2.05733I
b = 0.51225 3.00877I
16.3366 + 14.0024I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.73019 0.15438I
a = 0.02330 2.05733I
b = 0.51225 + 3.00877I
16.3366 14.0024I 0
u = 1.75668 + 0.21779I
a = 0.222757 1.210750I
b = 0.07750 + 1.91022I
18.1051 3.7291I 0
u = 1.75668 0.21779I
a = 0.222757 + 1.210750I
b = 0.07750 1.91022I
18.1051 + 3.7291I 0
u = 0.0432217 + 0.0807555I
a = 11.91410 0.09743I
b = 1.40737 0.33426I
8.63685 2.55255I 12.94052 1.53049I
u = 0.0432217 0.0807555I
a = 11.91410 + 0.09743I
b = 1.40737 + 0.33426I
8.63685 + 2.55255I 12.94052 + 1.53049I
11
II.
I
u
2
= h−u
12
+8u
10
+· · ·+b1, u
13
10u
11
+· · ·+a6, u
14
10u
12
+· · ·5u1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
13
+ 10u
11
+ ··· 5u + 6
u
12
8u
10
+ ··· + 2u + 1
a
2
=
u
13
+ 10u
11
+ ··· 5u + 5
u
9
+ 6u
7
12u
5
+ 9u
3
2u
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
u
13
+ u
12
+ ··· 5u + 7
u
11
7u
9
+ 17u
7
17u
5
+ 8u
3
3u
a
11
=
u
u
a
3
=
u
13
+ u
12
+ ··· u + 7
u
3
2u
a
6
=
u
13
+ 10u
11
+ ··· 3u + 3
u
6
4u
4
+ 4u
2
a
10
=
u
11
+ u
10
+ ··· + u 5
u
13
9u
11
+ 31u
9
51u
7
+ 41u
5
15u
3
+ 3u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3u
13
u
12
31u
11
+12u
10
+123u
9
54u
8
234u
7
+113u
6
+222u
5
112u
4
107u
3
+53u
2
+23u
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 3u
13
+ ··· u 1
c
2
u
14
3u
13
+ ··· 4u + 1
c
3
u
14
+ u
13
+ ··· 2u + 1
c
4
, c
5
u
14
+ u
13
+ ··· + u 1
c
6
u
14
+ 3u
13
+ ··· + 4u + 1
c
7
, c
8
u
14
10u
12
+ ··· 5u 1
c
9
u
14
u
13
+ ··· u 1
c
10
u
14
+ 2u
13
+ ··· u + 1
c
11
, c
12
u
14
10u
12
+ ··· + 5u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
+ 3y
13
+ ··· 9y + 1
c
2
, c
6
y
14
17y
13
+ ··· 60y + 1
c
3
y
14
+ 3y
13
+ ··· + 4y
3
+ 1
c
4
, c
5
, c
9
y
14
17y
13
+ ··· y + 1
c
7
, c
8
, c
11
c
12
y
14
20y
13
+ ··· 45y + 1
c
10
y
14
+ 4y
11
+ ··· + 3y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.968017 + 0.337938I
a = 1.078150 0.571014I
b = 0.709305 + 0.039438I
10.20040 0.82211I 14.2370 0.6203I
u = 0.968017 0.337938I
a = 1.078150 + 0.571014I
b = 0.709305 0.039438I
10.20040 + 0.82211I 14.2370 + 0.6203I
u = 1.14545
a = 0.563709
b = 0.155012
2.82868 18.6140
u = 0.720462 + 0.270481I
a = 0.628432 0.675348I
b = 0.656755 0.815273I
3.73792 1.01626I 11.08062 + 0.61543I
u = 0.720462 0.270481I
a = 0.628432 + 0.675348I
b = 0.656755 + 0.815273I
3.73792 + 1.01626I 11.08062 0.61543I
u = 0.558487 + 0.398529I
a = 0.112815 + 0.298362I
b = 1.03491 1.00628I
8.88600 + 3.51593I 15.2342 5.4123I
u = 0.558487 0.398529I
a = 0.112815 0.298362I
b = 1.03491 + 1.00628I
8.88600 3.51593I 15.2342 + 5.4123I
u = 1.37496
a = 0.439623
b = 1.10231
4.87233 7.57420
u = 1.64578 + 0.11762I
a = 0.89070 1.83826I
b = 0.91793 + 2.49252I
16.7686 5.4927I 16.7104 + 3.4526I
u = 1.64578 0.11762I
a = 0.89070 + 1.83826I
b = 0.91793 2.49252I
16.7686 + 5.4927I 16.7104 3.4526I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.66941 + 0.05921I
a = 0.19583 1.71092I
b = 0.33171 + 2.51769I
12.32760 + 2.20627I 11.06041 0.00050I
u = 1.66941 0.05921I
a = 0.19583 + 1.71092I
b = 0.33171 2.51769I
12.32760 2.20627I 11.06041 + 0.00050I
u = 1.72337
a = 0.416712
b = 0.220318
19.0939 17.1450
u = 0.165484
a = 6.07182
b = 0.506584
0.331903 1.97830
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
+ 3u
13
+ ··· u 1)(u
65
10u
64
+ ··· 646157u + 15851)
c
2
(u
14
3u
13
+ ··· 4u + 1)(u
65
31u
63
+ ··· + 4u + 1)
c
3
(u
14
+ u
13
+ ··· 2u + 1)(u
65
2u
64
+ ··· + 1806u 14929)
c
4
, c
5
(u
14
+ u
13
+ ··· + u 1)(u
65
+ 2u
64
+ ··· + 81u 1)
c
6
(u
14
+ 3u
13
+ ··· + 4u + 1)(u
65
31u
63
+ ··· + 4u + 1)
c
7
, c
8
(u
14
10u
12
+ ··· 5u 1)(u
65
+ u
64
+ ··· + 15u 1)
c
9
(u
14
u
13
+ ··· u 1)(u
65
+ 2u
64
+ ··· + 81u 1)
c
10
(u
14
+ 2u
13
+ ··· u + 1)(u
65
+ 3u
64
+ ··· 18311u + 5039)
c
11
, c
12
(u
14
10u
12
+ ··· + 5u 1)(u
65
+ u
64
+ ··· + 15u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
14
+ 3y
13
+ ··· 9y + 1)
· (y
65
+ 42y
64
+ ··· + 350419778635y 251254201)
c
2
, c
6
(y
14
17y
13
+ ··· 60y + 1)(y
65
62y
64
+ ··· 446y 1)
c
3
(y
14
+ 3y
13
+ ··· + 4y
3
+ 1)
· (y
65
+ 34y
64
+ ··· + 1425607182y 222875041)
c
4
, c
5
, c
9
(y
14
17y
13
+ ··· y + 1)(y
65
74y
64
+ ··· + 6515y 1)
c
7
, c
8
, c
11
c
12
(y
14
20y
13
+ ··· 45y + 1)(y
65
85y
64
+ ··· 125y 1)
c
10
(y
14
+ 4y
11
+ ··· + 3y + 1)
· (y
65
+ 27y
64
+ ··· + 94761095y 25391521)
18