12a
0999
(K12a
0999
)
A knot diagram
1
Linearized knot diagam
4 6 12 9 2 10 11 1 5 7 3 8
Solving Sequence
6,10
7 11
3,8
12 2 5 9 4 1
c
6
c
10
c
7
c
11
c
2
c
5
c
9
c
4
c
1
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h826872493u
24
+ 41514578887u
23
+ ··· + 26691174904b + 267919895192,
75775316763u
24
724263180731u
23
+ ··· + 53382349808a 515069062880,
u
25
11u
24
+ ··· 80u + 16i
I
u
2
= h−10u
35
12u
34
+ ··· + 8b + 68, 68u
35
a + 508u
35
+ ··· 1145a + 7276, u
36
+ 4u
35
+ ··· + 16u + 1i
I
u
3
= h−7u
10
+ 4u
9
+ 36u
8
34u
7
43u
6
+ 60u
5
+ 10u
4
31u
3
19u
2
+ 11b + 16u + 17,
8u
10
+ 25u
9
+ 38u
8
163u
7
+ 31u
6
+ 298u
5
262u
4
136u
3
+ 269u
2
+ 11a 32u 78,
u
11
2u
10
5u
9
+ 14u
8
+ u
7
27u
6
+ 18u
5
+ 15u
4
20u
3
u
2
+ 6u + 1i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h8.27×10
8
u
24
+4 .15×10
10
u
23
+· · ·+2. 67×10
10
b+2.68×10
11
, 7.58×10
10
u
24
7.24 × 10
11
u
23
+ · · · + 5.34 × 10
10
a 5.15 × 10
11
, u
25
11u
24
+ · · · 80u + 16i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
1.41948u
24
+ 13.5675u
23
+ ··· 51.2819u + 9.64868
0.0309792u
24
1.55537u
23
+ ··· + 37.1258u 10.0378
a
8
=
u
2
+ 1
u
4
2u
2
a
12
=
0.167582u
24
3.50276u
23
+ ··· + 58.5852u 16.0667
3.79748u
24
34.4987u
23
+ ··· + 133.770u 29.2311
a
2
=
1.45046u
24
+ 12.0121u
23
+ ··· 14.1561u 0.389094
0.0309792u
24
1.55537u
23
+ ··· + 37.1258u 10.0378
a
5
=
3.96506u
24
38.0015u
23
+ ··· + 190.355u 44.2978
3.79748u
24
34.4987u
23
+ ··· + 132.770u 29.2311
a
9
=
1.73754u
24
+ 15.9703u
23
+ ··· 68.0866u + 14.9573
0.976986u
24
8.80582u
23
+ ··· + 24.7513u 4.30668
a
4
=
6.50025u
24
60.8358u
23
+ ··· + 275.705u 62.6895
2.16560u
24
+ 22.8582u
23
+ ··· 153.338u + 36.8239
a
1
=
4.43829u
24
+ 41.9516u
23
+ ··· 195.816u + 43.9195
1.35725u
24
+ 12.5528u
23
+ ··· 50.4134u + 10.8323
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
145412112683
3336396863
u
24
1365948008373
3336396863
u
23
+ ··· +
6268794612260
3336396863
u
1430304974606
3336396863
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
22u
24
+ ··· + 5120u + 512
c
2
, c
3
, c
5
c
11
u
25
u
24
+ ··· 4u + 1
c
4
, c
8
, c
9
c
12
u
25
11u
23
+ ··· + u 1
c
6
, c
7
, c
10
u
25
11u
24
+ ··· 80u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
2y
24
+ ··· + 76808192y 262144
c
2
, c
3
, c
5
c
11
y
25
15y
24
+ ··· + 50y 1
c
4
, c
8
, c
9
c
12
y
25
22y
24
+ ··· + 21y 1
c
6
, c
7
, c
10
y
25
23y
24
+ ··· 1408y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.00934
a = 0.805015
b = 1.63266
7.20191 30.6470
u = 0.012976 + 1.033860I
a = 0.633148 0.106162I
b = 0.791764 + 0.522766I
3.03037 1.54703I 6.68506 + 3.68219I
u = 0.012976 1.033860I
a = 0.633148 + 0.106162I
b = 0.791764 0.522766I
3.03037 + 1.54703I 6.68506 3.68219I
u = 0.881775 + 0.323566I
a = 0.378664 + 0.249573I
b = 0.365509 0.726585I
6.42854 2.68579I 9.83614 + 1.93428I
u = 0.881775 0.323566I
a = 0.378664 0.249573I
b = 0.365509 + 0.726585I
6.42854 + 2.68579I 9.83614 1.93428I
u = 0.477303 + 0.717814I
a = 0.009597 0.906421I
b = 1.269930 + 0.185562I
7.01624 2.33284I 5.90770 + 2.60194I
u = 0.477303 0.717814I
a = 0.009597 + 0.906421I
b = 1.269930 0.185562I
7.01624 + 2.33284I 5.90770 2.60194I
u = 0.482722 + 1.037880I
a = 0.369971 + 0.530061I
b = 1.214990 0.563112I
1.10842 12.71280I 2.59152 + 8.71606I
u = 0.482722 1.037880I
a = 0.369971 0.530061I
b = 1.214990 + 0.563112I
1.10842 + 12.71280I 2.59152 8.71606I
u = 1.329560 + 0.203875I
a = 0.28740 1.62065I
b = 0.662175 + 0.545556I
2.65006 + 2.55544I 3.11128 1.65198I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.329560 0.203875I
a = 0.28740 + 1.62065I
b = 0.662175 0.545556I
2.65006 2.55544I 3.11128 + 1.65198I
u = 0.98981 + 1.06101I
a = 0.181907 + 0.253452I
b = 0.954754 + 0.361220I
2.30832 + 5.78881I 2.00000 7.25000I
u = 0.98981 1.06101I
a = 0.181907 0.253452I
b = 0.954754 0.361220I
2.30832 5.78881I 2.00000 + 7.25000I
u = 0.516035
a = 0.631196
b = 0.157637
0.767709 13.0610
u = 1.49267 + 0.27371I
a = 0.65793 + 1.31350I
b = 1.148310 0.509995I
0.65901 + 5.99024I 0. 4.38665I
u = 1.49267 0.27371I
a = 0.65793 1.31350I
b = 1.148310 + 0.509995I
0.65901 5.99024I 0. + 4.38665I
u = 1.47479 + 0.50270I
a = 0.123556 + 1.187480I
b = 1.108500 0.652505I
7.77371 + 7.32084I 7.72526 5.56309I
u = 1.47479 0.50270I
a = 0.123556 1.187480I
b = 1.108500 + 0.652505I
7.77371 7.32084I 7.72526 + 5.56309I
u = 1.58061 + 0.03704I
a = 0.272956 1.225950I
b = 0.151992 + 1.145230I
14.6920 + 3.8040I 11.54426 2.08774I
u = 1.58061 0.03704I
a = 0.272956 + 1.225950I
b = 0.151992 1.145230I
14.6920 3.8040I 11.54426 + 2.08774I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54138 + 0.37767I
a = 0.30399 1.46629I
b = 1.36369 + 0.77531I
7.5940 + 17.7952I 5.80164 8.80793I
u = 1.54138 0.37767I
a = 0.30399 + 1.46629I
b = 1.36369 0.77531I
7.5940 17.7952I 5.80164 + 8.80793I
u = 0.123896 + 0.326612I
a = 1.67598 + 1.41797I
b = 0.709073 0.106576I
1.292320 0.176707I 7.01154 + 0.09257I
u = 0.123896 0.326612I
a = 1.67598 1.41797I
b = 0.709073 + 0.106576I
1.292320 + 0.176707I 7.01154 0.09257I
u = 2.04475
a = 0.305643
b = 0.652933
13.8003 0
7
II. I
u
2
= h−10u
35
12u
34
+ · · · + 8b + 68, 68u
35
a + 508u
35
+ · · · 1145a +
7276, u
36
+ 4u
35
+ · · · + 16u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
a
5
4
u
35
+
3
2
u
34
+ ··· +
57
8
u
17
2
a
8
=
u
2
+ 1
u
4
2u
2
a
12
=
5
4
u
35
a 2u
35
+ ··· +
17
2
a
439
8
27
8
u
35
+
59
8
u
34
+ ··· +
123
4
u
53
8
a
2
=
5
4
u
35
+
3
2
u
34
+ ··· + a
17
2
5
4
u
35
+
3
2
u
34
+ ··· +
57
8
u
17
2
a
5
=
2.37500au
35
+ 6.62500au
34
+ ··· + 3.12500a 23.5000
47
8
u
35
a 2u
35
+ ··· +
35
8
a
635
8
a
9
=
1
2
u
35
a
41
8
u
35
+ ··· +
37
4
a
385
8
9
4
u
35
a +
63
8
u
35
+ ···
5
2
a + 84
a
4
=
2u
35
a +
67
2
u
35
+ ···
627
8
a +
1065
2
27
8
u
35
a + u
35
+ ··· +
11
4
a
15
4
a
1
=
2u
35
a + u
35
+ ··· +
61
8
a
495
8
31
8
u
35
a + 3u
35
+ ···
23
8
a
55
8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 148u
35
+
1111
2
u
34
+ ··· + 1907u +
3931
2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
36
+ 11u
35
+ ··· + 12u + 1)
2
c
2
, c
3
, c
5
c
11
u
72
+ 5u
71
+ ··· + 44u + 31
c
4
, c
8
, c
9
c
12
u
72
+ 15u
71
+ ··· + 1022u + 149
c
6
, c
7
, c
10
(u
36
+ 4u
35
+ ··· + 16u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
36
+ 9y
35
+ ··· 78y + 1)
2
c
2
, c
3
, c
5
c
11
y
72
109y
71
+ ··· 5904y + 961
c
4
, c
8
, c
9
c
12
y
72
125y
71
+ ··· + 239896y + 22201
c
6
, c
7
, c
10
(y
36
36y
35
+ ··· 228y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.801734 + 0.696202I
a = 0.525131 0.532417I
b = 1.060570 0.298701I
2.58334 1.89748I 1.79078 + 1.73365I
u = 0.801734 + 0.696202I
a = 0.146921 + 0.381228I
b = 1.240490 + 0.042488I
2.58334 1.89748I 1.79078 + 1.73365I
u = 0.801734 0.696202I
a = 0.525131 + 0.532417I
b = 1.060570 + 0.298701I
2.58334 + 1.89748I 1.79078 1.73365I
u = 0.801734 0.696202I
a = 0.146921 0.381228I
b = 1.240490 0.042488I
2.58334 + 1.89748I 1.79078 1.73365I
u = 0.406976 + 0.842772I
a = 0.364285 + 0.941569I
b = 1.216290 0.277018I
3.72449 + 7.15532I 1.32336 7.08750I
u = 0.406976 + 0.842772I
a = 0.346677 0.608804I
b = 1.251710 + 0.596442I
3.72449 + 7.15532I 1.32336 7.08750I
u = 0.406976 0.842772I
a = 0.364285 0.941569I
b = 1.216290 + 0.277018I
3.72449 7.15532I 1.32336 + 7.08750I
u = 0.406976 0.842772I
a = 0.346677 + 0.608804I
b = 1.251710 0.596442I
3.72449 7.15532I 1.32336 + 7.08750I
u = 0.392598 + 1.003430I
a = 0.903413 0.103360I
b = 0.821320 0.340230I
2.79209 + 2.82464I 5.35953 2.15606I
u = 0.392598 + 1.003430I
a = 0.442073 0.041027I
b = 0.867684 0.552611I
2.79209 + 2.82464I 5.35953 2.15606I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.392598 1.003430I
a = 0.903413 + 0.103360I
b = 0.821320 + 0.340230I
2.79209 2.82464I 5.35953 + 2.15606I
u = 0.392598 1.003430I
a = 0.442073 + 0.041027I
b = 0.867684 + 0.552611I
2.79209 2.82464I 5.35953 + 2.15606I
u = 1.245720 + 0.066167I
a = 0.18634 1.49060I
b = 0.326160 + 0.291125I
2.11796 + 2.01943I 0
u = 1.245720 + 0.066167I
a = 0.60423 1.62536I
b = 0.872185 + 0.570997I
2.11796 + 2.01943I 0
u = 1.245720 0.066167I
a = 0.18634 + 1.49060I
b = 0.326160 0.291125I
2.11796 2.01943I 0
u = 1.245720 0.066167I
a = 0.60423 + 1.62536I
b = 0.872185 0.570997I
2.11796 2.01943I 0
u = 1.237270 + 0.197913I
a = 0.45596 + 1.50174I
b = 0.255758 0.212067I
5.29216 7.38796I 0
u = 1.237270 + 0.197913I
a = 0.03864 1.81341I
b = 1.097400 + 0.775615I
5.29216 7.38796I 0
u = 1.237270 0.197913I
a = 0.45596 1.50174I
b = 0.255758 + 0.212067I
5.29216 + 7.38796I 0
u = 1.237270 0.197913I
a = 0.03864 + 1.81341I
b = 1.097400 0.775615I
5.29216 + 7.38796I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.544706 + 0.473507I
a = 0.802270 0.233838I
b = 0.011900 + 0.907114I
4.45076 7.51019I 6.15354 + 7.01976I
u = 0.544706 + 0.473507I
a = 1.38473 1.19024I
b = 1.061310 + 0.548084I
4.45076 7.51019I 6.15354 + 7.01976I
u = 0.544706 0.473507I
a = 0.802270 + 0.233838I
b = 0.011900 0.907114I
4.45076 + 7.51019I 6.15354 7.01976I
u = 0.544706 0.473507I
a = 1.38473 + 1.19024I
b = 1.061310 0.548084I
4.45076 + 7.51019I 6.15354 7.01976I
u = 0.242081 + 0.642003I
a = 0.121015 0.723872I
b = 0.191735 + 0.659845I
0.52756 + 3.89617I 2.77520 6.34158I
u = 0.242081 + 0.642003I
a = 1.236690 + 0.347854I
b = 0.980806 0.514343I
0.52756 + 3.89617I 2.77520 6.34158I
u = 0.242081 0.642003I
a = 0.121015 + 0.723872I
b = 0.191735 0.659845I
0.52756 3.89617I 2.77520 + 6.34158I
u = 0.242081 0.642003I
a = 1.236690 0.347854I
b = 0.980806 + 0.514343I
0.52756 3.89617I 2.77520 + 6.34158I
u = 1.346270 + 0.118214I
a = 0.057599 + 1.129430I
b = 1.206250 0.403477I
3.10296 1.88811I 0
u = 1.346270 + 0.118214I
a = 0.807053 1.151850I
b = 1.140800 + 0.801114I
3.10296 1.88811I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.346270 0.118214I
a = 0.057599 1.129430I
b = 1.206250 + 0.403477I
3.10296 + 1.88811I 0
u = 1.346270 0.118214I
a = 0.807053 + 1.151850I
b = 1.140800 0.801114I
3.10296 + 1.88811I 0
u = 1.360600 + 0.024824I
a = 0.59798 2.02753I
b = 1.092470 + 0.227442I
4.48945 + 0.44139I 0
u = 1.360600 + 0.024824I
a = 1.56290 2.59175I
b = 1.95395 + 2.12838I
4.48945 + 0.44139I 0
u = 1.360600 0.024824I
a = 0.59798 + 2.02753I
b = 1.092470 0.227442I
4.48945 0.44139I 0
u = 1.360600 0.024824I
a = 1.56290 + 2.59175I
b = 1.95395 2.12838I
4.48945 0.44139I 0
u = 0.479497 + 0.411115I
a = 1.278950 + 0.303011I
b = 0.113905 0.253707I
1.58087 0.53277I 7.83505 0.25698I
u = 0.479497 + 0.411115I
a = 0.090316 + 0.483528I
b = 0.673813 + 0.606032I
1.58087 0.53277I 7.83505 0.25698I
u = 0.479497 0.411115I
a = 1.278950 0.303011I
b = 0.113905 + 0.253707I
1.58087 + 0.53277I 7.83505 + 0.25698I
u = 0.479497 0.411115I
a = 0.090316 0.483528I
b = 0.673813 0.606032I
1.58087 + 0.53277I 7.83505 + 0.25698I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.361950 + 0.320932I
a = 0.260335 + 1.373070I
b = 0.304737 0.598586I
5.50387 7.35891I 0
u = 1.361950 + 0.320932I
a = 0.02776 1.48728I
b = 1.165430 + 0.676249I
5.50387 7.35891I 0
u = 1.361950 0.320932I
a = 0.260335 1.373070I
b = 0.304737 + 0.598586I
5.50387 + 7.35891I 0
u = 1.361950 0.320932I
a = 0.02776 + 1.48728I
b = 1.165430 0.676249I
5.50387 + 7.35891I 0
u = 0.592608
a = 0.675564
b = 1.30375
0.850544 11.0660
u = 0.592608
a = 2.60037
b = 0.512864
0.850544 11.0660
u = 1.45678 + 0.15564I
a = 0.379396 + 0.929302I
b = 0.398711 0.870251I
7.76795 1.60452I 0
u = 1.45678 + 0.15564I
a = 0.074350 0.851116I
b = 0.638031 + 0.406509I
7.76795 1.60452I 0
u = 1.45678 0.15564I
a = 0.379396 0.929302I
b = 0.398711 + 0.870251I
7.76795 + 1.60452I 0
u = 1.45678 0.15564I
a = 0.074350 + 0.851116I
b = 0.638031 0.406509I
7.76795 + 1.60452I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.50323 + 0.07660I
a = 1.32499 + 0.82787I
b = 0.737498 0.096809I
5.69053 0.15999I 0
u = 1.50323 + 0.07660I
a = 1.56911 1.05381I
b = 1.72400 + 0.87076I
5.69053 0.15999I 0
u = 1.50323 0.07660I
a = 1.32499 0.82787I
b = 0.737498 + 0.096809I
5.69053 + 0.15999I 0
u = 1.50323 0.07660I
a = 1.56911 + 1.05381I
b = 1.72400 0.87076I
5.69053 + 0.15999I 0
u = 1.49462 + 0.19720I
a = 0.16111 + 1.41989I
b = 1.33487 0.64551I
11.0335 + 10.1489I 0
u = 1.49462 + 0.19720I
a = 0.30102 + 1.55009I
b = 0.26778 1.48948I
11.0335 + 10.1489I 0
u = 1.49462 0.19720I
a = 0.16111 1.41989I
b = 1.33487 + 0.64551I
11.0335 10.1489I 0
u = 1.49462 0.19720I
a = 0.30102 1.55009I
b = 0.26778 + 1.48948I
11.0335 10.1489I 0
u = 1.48828 + 0.31375I
a = 0.45103 1.50201I
b = 1.161310 + 0.493885I
2.38283 11.34240I 0
u = 1.48828 + 0.31375I
a = 0.46240 + 1.61868I
b = 1.34786 0.90026I
2.38283 11.34240I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.48828 0.31375I
a = 0.45103 + 1.50201I
b = 1.161310 0.493885I
2.38283 + 11.34240I 0
u = 1.48828 0.31375I
a = 0.46240 1.61868I
b = 1.34786 + 0.90026I
2.38283 + 11.34240I 0
u = 0.062588 + 0.462865I
a = 0.745882 + 1.101450I
b = 0.761483 0.431993I
1.322960 0.095597I 5.44765 0.30752I
u = 0.062588 + 0.462865I
a = 1.69151 + 1.21537I
b = 0.841856 + 0.077327I
1.322960 0.095597I 5.44765 0.30752I
u = 0.062588 0.462865I
a = 0.745882 1.101450I
b = 0.761483 + 0.431993I
1.322960 + 0.095597I 5.44765 + 0.30752I
u = 0.062588 0.462865I
a = 1.69151 1.21537I
b = 0.841856 0.077327I
1.322960 + 0.095597I 5.44765 + 0.30752I
u = 1.56665 + 0.25660I
a = 0.231175 0.827713I
b = 1.36349 + 0.49044I
9.69181 + 1.76230I 0
u = 1.56665 + 0.25660I
a = 0.223081 0.793724I
b = 0.469240 + 0.837793I
9.69181 + 1.76230I 0
u = 1.56665 0.25660I
a = 0.231175 + 0.827713I
b = 1.36349 0.49044I
9.69181 1.76230I 0
u = 1.56665 0.25660I
a = 0.223081 + 0.793724I
b = 0.469240 0.837793I
9.69181 1.76230I 0
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.0661431
a = 6.64617
b = 8.53647
0.00224370 1841.00
u = 0.0661431
a = 128.621
b = 1.00230
0.00224370 1841.00
18
III. I
u
3
= h−7u
10
+ 4u
9
+ · · · + 11b + 17, 8u
10
+ 25u
9
+ · · · + 11a
78, u
11
2u
10
+ · · · + 6u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
0.727273u
10
2.27273u
9
+ ··· + 2.90909u + 7.09091
0.636364u
10
0.363636u
9
+ ··· 1.45455u 1.54545
a
8
=
u
2
+ 1
u
4
2u
2
a
12
=
0.272727u
10
2.72727u
9
+ ··· + 11.0909u + 9.90909
0.363636u
10
+ 0.363636u
9
+ ··· 3.54545u 2.45455
a
2
=
1.36364u
10
2.63636u
9
+ ··· + 1.45455u + 5.54545
0.636364u
10
0.363636u
9
+ ··· 1.45455u 1.54545
a
5
=
0.636364u
10
2.36364u
9
+ ··· + 5.54545u + 8.45455
0.363636u
10
+ 0.363636u
9
+ ··· 4.54545u 2.45455
a
9
=
2.09091u
10
3.90909u
9
+ ··· + 2.36364u + 9.63636
u
10
+ u
9
+ 5u
8
8u
7
4u
6
+ 16u
5
7u
4
10u
3
+ 9u
2
+ 2u 2
a
4
=
0.363636u
10
+ 1.63636u
9
+ ··· 6.45455u 4.54545
0.636364u
10
+ 0.363636u
9
+ ··· + 3.45455u + 1.54545
a
1
=
u
10
3u
9
4u
8
+ 19u
7
7u
6
31u
5
+ 34u
4
+ 8u
3
30u
2
+ 7u + 8
0.636364u
10
+ 0.636364u
9
+ ··· 4.45455u 2.54545
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
74
11
u
10
+
113
11
u
9
+
357
11
u
8
746
11
u
7
134
11
u
6
+
1178
11
u
5
724
11
u
4
422
11
u
3
+
456
11
u
2
+
144
11
u +
10
11
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
6u
10
+ ··· 11u + 1
c
2
, c
11
u
11
5u
9
u
8
+ 9u
7
+ 3u
6
10u
5
3u
4
+ 7u
3
+ 3u
2
2u 1
c
3
, c
5
u
11
5u
9
+ u
8
+ 9u
7
3u
6
10u
5
+ 3u
4
+ 7u
3
3u
2
2u + 1
c
4
, c
8
u
11
u
10
+ ··· 5u + 1
c
6
, c
7
u
11
2u
10
+ ··· + 6u + 1
c
9
, c
12
u
11
+ u
10
+ ··· 5u 1
c
10
u
11
+ 2u
10
+ ··· + 6u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
2y
10
+ ··· + 21y 1
c
2
, c
3
, c
5
c
11
y
11
10y
10
+ ··· + 10y 1
c
4
, c
8
, c
9
c
12
y
11
13y
10
+ ··· + 45y 1
c
6
, c
7
, c
10
y
11
14y
10
+ ··· + 38y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.947758
a = 0.866165
b = 1.59894
7.33878 27.9880
u = 0.697676 + 0.834481I
a = 0.549586 + 0.594984I
b = 0.694924 + 0.358502I
3.09180 4.84097I 5.24884 + 3.87488I
u = 0.697676 0.834481I
a = 0.549586 0.594984I
b = 0.694924 0.358502I
3.09180 + 4.84097I 5.24884 3.87488I
u = 1.284570 + 0.369820I
a = 0.40416 + 1.72162I
b = 0.906586 0.628396I
5.41429 + 9.15643I 5.68722 10.47253I
u = 1.284570 0.369820I
a = 0.40416 1.72162I
b = 0.906586 + 0.628396I
5.41429 9.15643I 5.68722 + 10.47253I
u = 1.35854
a = 0.543106
b = 1.74021
4.07888 9.27100
u = 1.48788 + 0.09186I
a = 0.855967 1.087180I
b = 0.811433 + 0.624669I
6.02864 + 0.67022I 7.62823 2.72103I
u = 1.48788 0.09186I
a = 0.855967 + 1.087180I
b = 0.811433 0.624669I
6.02864 0.67022I 7.62823 + 2.72103I
u = 0.449664
a = 1.10365
b = 0.719426
0.265950 2.42860
u = 0.183780
a = 5.68622
b = 1.23706
0.0829640 0.0440200
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 2.00050
a = 0.0862312
b = 0.517601
14.0178 25.1160
23
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
1
0
a
7
=
1
0
a
11
=
1
0
a
3
=
0
1
a
8
=
1
0
a
12
=
1
1
a
2
=
1
1
a
5
=
0
1
a
9
=
1
1
a
4
=
1
0
a
1
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
11
, c
12
u 1
c
3
, c
4
, c
5
c
8
u + 1
c
6
, c
7
, c
10
u
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
c
9
, c
11
, c
12
y 1
c
6
, c
7
, c
10
y
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
27
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
11
6u
10
+ ··· 11u + 1)(u
25
22u
24
+ ··· + 5120u + 512)
· (u
36
+ 11u
35
+ ··· + 12u + 1)
2
c
2
, c
11
(u 1)(u
11
5u
9
+ ··· 2u 1)
· (u
25
u
24
+ ··· 4u + 1)(u
72
+ 5u
71
+ ··· + 44u + 31)
c
3
, c
5
(u + 1)(u
11
5u
9
+ ··· 2u + 1)
· (u
25
u
24
+ ··· 4u + 1)(u
72
+ 5u
71
+ ··· + 44u + 31)
c
4
, c
8
(u + 1)(u
11
u
10
+ ··· 5u + 1)(u
25
11u
23
+ ··· + u 1)
· (u
72
+ 15u
71
+ ··· + 1022u + 149)
c
6
, c
7
u(u
11
2u
10
+ ··· + 6u + 1)(u
25
11u
24
+ ··· 80u + 16)
· (u
36
+ 4u
35
+ ··· + 16u + 1)
2
c
9
, c
12
(u 1)(u
11
+ u
10
+ ··· 5u 1)(u
25
11u
23
+ ··· + u 1)
· (u
72
+ 15u
71
+ ··· + 1022u + 149)
c
10
u(u
11
+ 2u
10
+ ··· + 6u 1)(u
25
11u
24
+ ··· 80u + 16)
· (u
36
+ 4u
35
+ ··· + 16u + 1)
2
28
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
11
2y
10
+ ··· + 21y 1)
· (y
25
2y
24
+ ··· + 76808192y 262144)
· (y
36
+ 9y
35
+ ··· 78y + 1)
2
c
2
, c
3
, c
5
c
11
(y 1)(y
11
10y
10
+ ··· + 10y 1)(y
25
15y
24
+ ··· + 50y 1)
· (y
72
109y
71
+ ··· 5904y + 961)
c
4
, c
8
, c
9
c
12
(y 1)(y
11
13y
10
+ ··· + 45y 1)(y
25
22y
24
+ ··· + 21y 1)
· (y
72
125y
71
+ ··· + 239896y + 22201)
c
6
, c
7
, c
10
y(y
11
14y
10
+ ··· + 38y 1)(y
25
23y
24
+ ··· 1408y 256)
· (y
36
36y
35
+ ··· 228y + 1)
2
29