12a
1000
(K12a
1000
)
A knot diagram
1
Linearized knot diagam
4 6 12 9 2 11 10 1 5 7 3 8
Solving Sequence
6,11 3,7
12 4 2 1 5 10 8 9
c
6
c
11
c
3
c
2
c
1
c
5
c
10
c
7
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−507973994943u
25
5311743375735u
24
+ ··· + 943195983256b + 10737106657608,
1342138332201u
25
+ 13747573664325u
24
+ ··· + 1886391966512a 21946395856256,
u
26
+ 11u
25
+ ··· 96u 16i
I
u
2
= h5u
31
16u
30
+ ··· + 8b + 64, 64u
31
a + 832u
31
+ ··· 928a + 12721, u
32
4u
31
+ ··· + 12u + 1i
I
u
3
= h−2u
12
u
10
+ 25u
9
+ 60u
8
+ 123u
7
+ 200u
6
+ 228u
5
+ 255u
4
+ 210u
3
+ 144u
2
+ 17b + 86u + 33,
33u
12
68u
11
+ ··· + 17a 178,
u
13
+ 2u
12
+ 9u
11
+ 14u
10
+ 30u
9
+ 40u
8
+ 49u
7
+ 60u
6
+ 44u
5
+ 48u
4
+ 24u
3
+ 17u
2
+ 8u + 1i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.08 × 10
11
u
25
5.31 × 10
12
u
24
+ · · · + 9.43 × 10
11
b + 1.07 ×
10
13
, 1.34 × 10
12
u
25
+ 1.37 × 10
13
u
24
+ · · · + 1.89 × 10
12
a 2.19 ×
10
13
, u
26
+ 11u
25
+ · · · 96u 16i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.711484u
25
7.28776u
24
+ ··· + 62.9142u + 11.6341
0.538567u
25
+ 5.63164u
24
+ ··· 56.6684u 11.3837
a
7
=
1
u
2
a
12
=
0.771582u
25
+ 7.93248u
24
+ ··· 61.5071u 11.9585
0.554928u
25
5.84051u
24
+ ··· + 63.1134u + 12.3453
a
4
=
0.170627u
25
1.82922u
24
+ ··· + 29.2931u + 6.47328
0.244914u
25
2.63645u
24
+ ··· + 30.4117u + 5.88703
a
2
=
0.172918u
25
1.65612u
24
+ ··· + 6.24576u + 0.250310
0.538567u
25
+ 5.63164u
24
+ ··· 56.6684u 11.3837
a
1
=
0.503649u
25
+ 5.23569u
24
+ ··· 49.7132u 11.2334
0.285246u
25
2.91517u
24
+ ··· + 26.0137u + 5.17604
a
5
=
0.216655u
25
+ 2.09197u
24
+ ··· + 0.606288u + 1.38678
0.554928u
25
5.84051u
24
+ ··· + 62.1134u + 12.3453
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
0.0588908u
25
+ 0.409826u
24
+ ··· + 8.22754u + 2.49800
0.437795u
25
4.41833u
24
+ ··· + 32.6510u + 6.31789
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
378381583910
117899497907
u
25
3984664362651
117899497907
u
24
+ ··· +
46248892072756
117899497907
u +
9858826741770
117899497907
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
23u
25
+ ··· + 512u 256
c
2
, c
3
, c
5
c
11
u
26
14u
24
+ ··· 6u + 1
c
4
, c
8
, c
9
c
12
u
26
9u
24
+ ··· + 3u + 1
c
6
, c
7
, c
10
u
26
+ 11u
25
+ ··· 96u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
5y
25
+ ··· 8060928y + 65536
c
2
, c
3
, c
5
c
11
y
26
28y
25
+ ··· 18y + 1
c
4
, c
8
, c
9
c
12
y
26
18y
25
+ ··· 13y + 1
c
6
, c
7
, c
10
y
26
+ 23y
25
+ ··· + 2176y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.346632 + 0.992789I
a = 0.455057 0.670912I
b = 0.508337 + 0.684335I
4.03470 0.73141I 5.45646 + 3.23030I
u = 0.346632 0.992789I
a = 0.455057 + 0.670912I
b = 0.508337 0.684335I
4.03470 + 0.73141I 5.45646 3.23030I
u = 0.656581 + 0.547695I
a = 1.13998 1.20654I
b = 1.40930 + 0.16783I
7.54501 2.22964I 6.88659 + 1.47861I
u = 0.656581 0.547695I
a = 1.13998 + 1.20654I
b = 1.40930 0.16783I
7.54501 + 2.22964I 6.88659 1.47861I
u = 1.012690 + 0.638363I
a = 0.831253 + 0.884931I
b = 1.40671 0.36552I
0.71270 12.30050I 0.84803 + 8.11656I
u = 1.012690 0.638363I
a = 0.831253 0.884931I
b = 1.40671 + 0.36552I
0.71270 + 12.30050I 0.84803 8.11656I
u = 0.717925 + 0.120399I
a = 0.520959 + 0.998156I
b = 0.253833 0.779324I
6.67762 3.08794I 9.21380 + 1.80971I
u = 0.717925 0.120399I
a = 0.520959 0.998156I
b = 0.253833 + 0.779324I
6.67762 + 3.08794I 9.21380 1.80971I
u = 1.28198
a = 1.13116
b = 1.45012
4.99672 2.97320
u = 0.126944 + 1.295060I
a = 0.265595 0.087832I
b = 0.147463 + 0.332812I
3.35359 + 2.09018I 5.38222 3.50453I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.126944 1.295060I
a = 0.265595 + 0.087832I
b = 0.147463 0.332812I
3.35359 2.09018I 5.38222 + 3.50453I
u = 0.309354 + 1.290100I
a = 0.511022 + 0.072506I
b = 0.064546 0.681699I
2.31636 6.78533I 4.90741 + 2.92210I
u = 0.309354 1.290100I
a = 0.511022 0.072506I
b = 0.064546 + 0.681699I
2.31636 + 6.78533I 4.90741 2.92210I
u = 1.082260 + 0.813357I
a = 0.813423 + 0.519935I
b = 1.303230 + 0.098901I
1.01017 + 5.35308I 0. 4.95781I
u = 1.082260 0.813357I
a = 0.813423 0.519935I
b = 1.303230 0.098901I
1.01017 5.35308I 0. + 4.95781I
u = 0.492337
a = 0.403546
b = 0.198681
0.832719 12.0990
u = 0.20866 + 1.55520I
a = 0.155152 1.028070I
b = 1.56648 + 0.45581I
14.5475 5.3956I 0
u = 0.20866 1.55520I
a = 0.155152 + 1.028070I
b = 1.56648 0.45581I
14.5475 + 5.3956I 0
u = 0.109643 + 0.356252I
a = 0.85111 + 1.69328I
b = 0.696554 0.117553I
1.288240 0.193189I 7.14857 + 0.44493I
u = 0.109643 0.356252I
a = 0.85111 1.69328I
b = 0.696554 + 0.117553I
1.288240 + 0.193189I 7.14857 0.44493I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.33614 + 1.61309I
a = 0.128911 + 1.022060I
b = 1.60534 0.55150I
8.0518 17.2435I 0
u = 0.33614 1.61309I
a = 0.128911 1.022060I
b = 1.60534 + 0.55150I
8.0518 + 17.2435I 0
u = 0.51814 + 1.56536I
a = 0.133329 0.923680I
b = 1.51497 + 0.26989I
10.19140 6.55039I 0
u = 0.51814 1.56536I
a = 0.133329 + 0.923680I
b = 1.51497 0.26989I
10.19140 + 6.55039I 0
u = 0.15338 + 1.72340I
a = 0.121371 + 0.752073I
b = 1.277510 0.324523I
10.30440 + 0.51735I 0
u = 0.15338 1.72340I
a = 0.121371 0.752073I
b = 1.277510 + 0.324523I
10.30440 0.51735I 0
7
II. I
u
2
= h5u
31
16u
30
+ · · · + 8b + 64, 64u
31
a + 832u
31
+ · · · 928a +
12721, u
32
4u
31
+ · · · + 12u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
a
5
8
u
31
+ 2u
30
+ ··· + 20u 8
a
7
=
1
u
2
a
12
=
5
8
u
31
a 7u
31
+ ··· + 8a 104
u
31
+
31
8
u
30
+ ··· + 21u 7
a
4
=
25
8
u
31
a +
515
8
u
31
+ ··· 64a + 1002
1
8
u
31
a
5
8
u
31
+ ··· + a 8
a
2
=
5
8
u
31
+ 2u
30
+ ··· + a 8
5
8
u
31
+ 2u
30
+ ··· + 20u 8
a
1
=
u
31
a 8u
31
+ ··· +
65
8
a 112
1
8
u
31
a u
31
+ ··· +
1
8
a 7
a
5
=
1
2
u
31
a +
31
8
u
31
+ ··· +
5
8
a + 40
1
2
u
31
a
25
8
u
31
+ ··· +
5
8
a 65
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
1
2
u
31
a
81
8
u
31
+ ··· +
17
2
a 170
0.500000au
31
+ 5.25000u
31
+ ··· 194.625u + 69.3750
(ii) Obstruction class = 1
(iii) Cusp Shapes =
195
2
u
31
384u
30
+ ··· 4750u + 1496
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
32
+ 6u
31
+ ··· + 12u + 1)
2
c
2
, c
3
, c
5
c
11
u
64
+ 5u
63
+ ··· + 37990u + 2243
c
4
, c
8
, c
9
c
12
u
64
+ 15u
63
+ ··· + 1020u + 389
c
6
, c
7
, c
10
(u
32
4u
31
+ ··· + 12u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
32
+ 8y
31
+ ··· 80y + 1)
2
c
2
, c
3
, c
5
c
11
y
64
125y
63
+ ··· 105577704y + 5031049
c
4
, c
8
, c
9
c
12
y
64
113y
63
+ ··· + 2826260y + 151321
c
6
, c
7
, c
10
(y
32
+ 36y
31
+ ··· 224y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.431291 + 0.935489I
a = 0.956425 0.649337I
b = 0.249448 0.237320I
2.64508 + 4.13131I 2.00000 1.07938I
u = 0.431291 + 0.935489I
a = 0.107831 + 0.316363I
b = 1.019950 0.614672I
2.64508 + 4.13131I 2.00000 1.07938I
u = 0.431291 0.935489I
a = 0.956425 + 0.649337I
b = 0.249448 + 0.237320I
2.64508 4.13131I 2.00000 + 1.07938I
u = 0.431291 0.935489I
a = 0.107831 0.316363I
b = 1.019950 + 0.614672I
2.64508 4.13131I 2.00000 + 1.07938I
u = 0.772766 + 0.711176I
a = 0.805503 1.026110I
b = 1.37402 + 0.41443I
4.52142 + 6.63284I 2.00159 6.22856I
u = 0.772766 + 0.711176I
a = 0.695473 + 1.176340I
b = 1.352210 0.220085I
4.52142 + 6.63284I 2.00159 6.22856I
u = 0.772766 0.711176I
a = 0.805503 + 1.026110I
b = 1.37402 0.41443I
4.52142 6.63284I 2.00159 + 6.22856I
u = 0.772766 0.711176I
a = 0.695473 1.176340I
b = 1.352210 + 0.220085I
4.52142 6.63284I 2.00159 + 6.22856I
u = 1.042100 + 0.409476I
a = 1.038010 + 0.351756I
b = 1.379790 0.010337I
3.43055 0.83324I 0
u = 1.042100 + 0.409476I
a = 1.143580 0.459271I
b = 1.225740 0.058473I
3.43055 0.83324I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.042100 0.409476I
a = 1.038010 0.351756I
b = 1.379790 + 0.010337I
3.43055 + 0.83324I 0
u = 1.042100 0.409476I
a = 1.143580 + 0.459271I
b = 1.225740 + 0.058473I
3.43055 + 0.83324I 0
u = 0.396831 + 0.630762I
a = 0.541000 + 0.721874I
b = 0.905643 0.460146I
0.45224 + 3.64045I 2.24261 7.23107I
u = 0.396831 + 0.630762I
a = 0.124510 1.357460I
b = 0.240645 + 0.627704I
0.45224 + 3.64045I 2.24261 7.23107I
u = 0.396831 0.630762I
a = 0.541000 0.721874I
b = 0.905643 + 0.460146I
0.45224 3.64045I 2.24261 + 7.23107I
u = 0.396831 0.630762I
a = 0.124510 + 1.357460I
b = 0.240645 0.627704I
0.45224 3.64045I 2.24261 + 7.23107I
u = 0.539207 + 0.347535I
a = 0.63868 1.40504I
b = 1.059540 + 0.479611I
4.27736 7.62552I 5.45701 + 7.52207I
u = 0.539207 + 0.347535I
a = 0.98325 1.52321I
b = 0.143917 + 0.979573I
4.27736 7.62552I 5.45701 + 7.52207I
u = 0.539207 0.347535I
a = 0.63868 + 1.40504I
b = 1.059540 0.479611I
4.27736 + 7.62552I 5.45701 7.52207I
u = 0.539207 0.347535I
a = 0.98325 + 1.52321I
b = 0.143917 0.979573I
4.27736 + 7.62552I 5.45701 7.52207I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.582148
a = 0.662437
b = 1.33289
0.971767 9.58410
u = 0.582148
a = 2.28961
b = 0.385636
0.971767 9.58410
u = 0.490519 + 0.301188I
a = 1.53553 + 0.29469I
b = 0.178851 0.166315I
1.47460 0.45386I 7.73807 0.08751I
u = 0.490519 + 0.301188I
a = 0.415975 0.083643I
b = 0.664449 + 0.607034I
1.47460 0.45386I 7.73807 0.08751I
u = 0.490519 0.301188I
a = 1.53553 0.29469I
b = 0.178851 + 0.166315I
1.47460 + 0.45386I 7.73807 + 0.08751I
u = 0.490519 0.301188I
a = 0.415975 + 0.083643I
b = 0.664449 0.607034I
1.47460 + 0.45386I 7.73807 + 0.08751I
u = 0.18830 + 1.42349I
a = 0.202038 + 1.104330I
b = 0.414850 0.754593I
3.83881 2.75921I 0
u = 0.18830 + 1.42349I
a = 0.483097 + 0.355334I
b = 1.61005 + 0.07966I
3.83881 2.75921I 0
u = 0.18830 1.42349I
a = 0.202038 1.104330I
b = 0.414850 + 0.754593I
3.83881 + 2.75921I 0
u = 0.18830 1.42349I
a = 0.483097 0.355334I
b = 1.61005 0.07966I
3.83881 + 2.75921I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.03982 + 1.44524I
a = 0.057513 + 0.785575I
b = 2.64086 2.38897I
5.23105 + 0.39376I 0
u = 0.03982 + 1.44524I
a = 1.60143 1.87142I
b = 1.133050 + 0.114406I
5.23105 + 0.39376I 0
u = 0.03982 1.44524I
a = 0.057513 0.785575I
b = 2.64086 + 2.38897I
5.23105 0.39376I 0
u = 0.03982 1.44524I
a = 1.60143 + 1.87142I
b = 1.133050 0.114406I
5.23105 0.39376I 0
u = 0.09697 + 1.46165I
a = 0.395493 0.884437I
b = 0.410137 + 0.605887I
4.24943 + 1.41411I 0
u = 0.09697 + 1.46165I
a = 0.394172 + 0.306749I
b = 1.33109 + 0.49231I
4.24943 + 1.41411I 0
u = 0.09697 1.46165I
a = 0.395493 + 0.884437I
b = 0.410137 0.605887I
4.24943 1.41411I 0
u = 0.09697 1.46165I
a = 0.394172 0.306749I
b = 1.33109 0.49231I
4.24943 1.41411I 0
u = 0.076052 + 0.502619I
a = 0.01589 + 1.53409I
b = 0.789172 0.391993I
1.275510 0.126168I 6.13877 0.17917I
u = 0.076052 + 0.502619I
a = 0.99470 + 1.41961I
b = 0.772271 + 0.108685I
1.275510 0.126168I 6.13877 0.17917I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.076052 0.502619I
a = 0.01589 1.53409I
b = 0.789172 + 0.391993I
1.275510 + 0.126168I 6.13877 + 0.17917I
u = 0.076052 0.502619I
a = 0.99470 1.41961I
b = 0.772271 0.108685I
1.275510 + 0.126168I 6.13877 + 0.17917I
u = 0.15788 + 1.49111I
a = 0.990763 0.348619I
b = 1.334190 + 0.255540I
1.85151 10.06120I 0
u = 0.15788 + 1.49111I
a = 0.075786 0.902790I
b = 0.36340 + 1.53238I
1.85151 10.06120I 0
u = 0.15788 1.49111I
a = 0.990763 + 0.348619I
b = 1.334190 0.255540I
1.85151 + 10.06120I 0
u = 0.15788 1.49111I
a = 0.075786 + 0.902790I
b = 0.36340 1.53238I
1.85151 + 10.06120I 0
u = 0.03260 + 1.52702I
a = 0.105052 + 0.896857I
b = 0.468227 1.029110I
8.11506 + 0.32962I 0
u = 0.03260 + 1.52702I
a = 0.680170 + 0.292106I
b = 1.372940 0.131175I
8.11506 + 0.32962I 0
u = 0.03260 1.52702I
a = 0.105052 0.896857I
b = 0.468227 + 1.029110I
8.11506 0.32962I 0
u = 0.03260 1.52702I
a = 0.680170 0.292106I
b = 1.372940 + 0.131175I
8.11506 0.32962I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.07478 + 1.55930I
a = 0.126779 0.865817I
b = 0.175645 + 0.991240I
6.95948 + 5.18070I 0
u = 0.07478 + 1.55930I
a = 0.628848 + 0.142802I
b = 1.340590 0.262433I
6.95948 + 5.18070I 0
u = 0.07478 1.55930I
a = 0.126779 + 0.865817I
b = 0.175645 0.991240I
6.95948 5.18070I 0
u = 0.07478 1.55930I
a = 0.628848 0.142802I
b = 1.340590 + 0.262433I
6.95948 5.18070I 0
u = 0.24956 + 1.60155I
a = 0.136197 0.928161I
b = 1.67985 + 0.63113I
12.1519 + 10.4459I 0
u = 0.24956 + 1.60155I
a = 0.225165 + 1.083980I
b = 1.45251 0.44976I
12.1519 + 10.4459I 0
u = 0.24956 1.60155I
a = 0.136197 + 0.928161I
b = 1.67985 0.63113I
12.1519 10.4459I 0
u = 0.24956 1.60155I
a = 0.225165 1.083980I
b = 1.45251 + 0.44976I
12.1519 10.4459I 0
u = 0.36857 + 1.67271I
a = 0.037760 0.877985I
b = 1.219860 + 0.318063I
10.34730 + 4.76510I 0
u = 0.36857 + 1.67271I
a = 0.028092 + 0.735464I
b = 1.48253 0.26044I
10.34730 + 4.76510I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.36857 1.67271I
a = 0.037760 + 0.877985I
b = 1.219860 0.318063I
10.34730 4.76510I 0
u = 0.36857 1.67271I
a = 0.028092 0.735464I
b = 1.48253 + 0.26044I
10.34730 4.76510I 0
u = 0.0656714
a = 15.2618
b = 8.59100
0.00222484 1871.50
u = 0.0656714
a = 130.818
b = 1.00226
0.00222484 1871.50
17
III. I
u
3
= h−2u
12
u
10
+ · · · + 17b + 33, 33u
12
68u
11
+ · · · + 17a
178, u
13
+ 2u
12
+ · · · + 8u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
1.94118u
12
+ 4u
11
+ ··· + 24.5294u + 10.4706
0.117647u
12
+ 0.0588235u
10
+ ··· 5.05882u 1.94118
a
7
=
1
u
2
a
12
=
2.05882u
12
+ 4u
11
+ ··· + 33.4706u + 13.5294
0.117647u
12
1.05882u
10
+ ··· 1.94118u 2.05882
a
4
=
1.05882u
12
2u
11
+ ··· 18.4706u 6.52941
0.117647u
12
u
11
+ ··· 0.941176u + 0.941176
a
2
=
2.05882u
12
+ 4u
11
+ ··· + 19.4706u + 8.52941
0.117647u
12
+ 0.0588235u
10
+ ··· 5.05882u 1.94118
a
1
=
2.17647u
12
+ 4u
11
+ ··· + 28.4118u + 11.5882
2
17
u
12
+ u
11
+ ···
18
17
u
33
17
a
5
=
1.94118u
12
+ 4u
11
+ ··· + 30.5294u + 12.4706
0.117647u
12
1.05882u
10
+ ··· 2.94118u 2.05882
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
2.17647u
12
+ 3u
11
+ ··· + 31.4118u + 14.5882
u
12
2u
11
+ ··· 7u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
32
17
u
12
+
101
17
u
10
162
17
u
9
246
17
u
8
710
17
u
7
1347
17
u
6
1149
17
u
5
106u
4
1014
17
u
3
774
17
u
2
509
17
u
69
17
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
u
12
+ ··· 12u + 1
c
2
, c
11
u
13
+ u
12
+ ··· u + 1
c
3
, c
5
u
13
u
12
+ ··· u 1
c
4
, c
8
u
13
u
12
+ ··· + 5u
2
1
c
6
, c
7
u
13
+ 2u
12
+ ··· + 8u + 1
c
9
, c
12
u
13
+ u
12
+ ··· 5u
2
+ 1
c
10
u
13
2u
12
+ ··· + 8u 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
5y
12
+ ··· + 24y 1
c
2
, c
3
, c
5
c
11
y
13
13y
12
+ ··· + 11y 1
c
4
, c
8
, c
9
c
12
y
13
11y
12
+ ··· + 10y 1
c
6
, c
7
, c
10
y
13
+ 14y
12
+ ··· + 30y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.369408 + 0.844268I
a = 0.855966 0.556779I
b = 0.786271 + 0.516986I
2.48419 5.58074I 0.98028 + 7.34042I
u = 0.369408 0.844268I
a = 0.855966 + 0.556779I
b = 0.786271 0.516986I
2.48419 + 5.58074I 0.98028 7.34042I
u = 0.207504 + 1.124570I
a = 0.341943 0.545748I
b = 0.542776 0.497782I
1.35916 + 7.74713I 0.66321 6.70613I
u = 0.207504 1.124570I
a = 0.341943 + 0.545748I
b = 0.542776 + 0.497782I
1.35916 7.74713I 0.66321 + 6.70613I
u = 1.25079
a = 1.12601
b = 1.40840
5.72243 9.02310
u = 0.148482 + 1.242790I
a = 0.182382 + 0.401286I
b = 0.525793 + 0.167078I
3.94795 2.05500I 8.88235 + 2.80157I
u = 0.148482 1.242790I
a = 0.182382 0.401286I
b = 0.525793 0.167078I
3.94795 + 2.05500I 8.88235 2.80157I
u = 0.06029 + 1.44510I
a = 0.330672 + 1.024240I
b = 1.46018 0.53960I
5.25730 0.86581I 0.601613 + 0.345135I
u = 0.06029 1.44510I
a = 0.330672 1.024240I
b = 1.46018 + 0.53960I
5.25730 + 0.86581I 0.601613 0.345135I
u = 0.414245
a = 1.80075
b = 0.745951
0.231166 2.15330
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.44334 + 1.63602I
a = 0.044120 0.869667I
b = 1.44235 + 0.31338I
11.35960 6.33356I 6.19149 + 5.07091I
u = 0.44334 1.63602I
a = 0.044120 + 0.869667I
b = 1.44235 0.31338I
11.35960 + 6.33356I 6.19149 5.07091I
u = 0.184571
a = 6.68203
b = 1.23331
0.0818132 0.180080
22
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
1
0
a
3
=
0
1
a
7
=
1
0
a
12
=
1
1
a
4
=
1
0
a
2
=
1
1
a
1
=
2
1
a
5
=
0
1
a
10
=
1
0
a
8
=
1
0
a
9
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
11
, c
12
u 1
c
3
, c
4
, c
5
c
8
u + 1
c
6
, c
7
, c
10
u
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
c
9
, c
11
, c
12
y 1
c
6
, c
7
, c
10
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
13
u
12
+ ··· 12u + 1)(u
26
23u
25
+ ··· + 512u 256)
· (u
32
+ 6u
31
+ ··· + 12u + 1)
2
c
2
, c
11
(u 1)(u
13
+ u
12
+ ··· u + 1)(u
26
14u
24
+ ··· 6u + 1)
· (u
64
+ 5u
63
+ ··· + 37990u + 2243)
c
3
, c
5
(u + 1)(u
13
u
12
+ ··· u 1)(u
26
14u
24
+ ··· 6u + 1)
· (u
64
+ 5u
63
+ ··· + 37990u + 2243)
c
4
, c
8
(u + 1)(u
13
u
12
+ ··· + 5u
2
1)(u
26
9u
24
+ ··· + 3u + 1)
· (u
64
+ 15u
63
+ ··· + 1020u + 389)
c
6
, c
7
u(u
13
+ 2u
12
+ ··· + 8u + 1)(u
26
+ 11u
25
+ ··· 96u 16)
· (u
32
4u
31
+ ··· + 12u + 1)
2
c
9
, c
12
(u 1)(u
13
+ u
12
+ ··· 5u
2
+ 1)(u
26
9u
24
+ ··· + 3u + 1)
· (u
64
+ 15u
63
+ ··· + 1020u + 389)
c
10
u(u
13
2u
12
+ ··· + 8u 1)(u
26
+ 11u
25
+ ··· 96u 16)
· (u
32
4u
31
+ ··· + 12u + 1)
2
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
13
5y
12
+ ··· + 24y 1)
· (y
26
5y
25
+ ··· 8060928y + 65536)(y
32
+ 8y
31
+ ··· 80y + 1)
2
c
2
, c
3
, c
5
c
11
(y 1)(y
13
13y
12
+ ··· + 11y 1)(y
26
28y
25
+ ··· 18y + 1)
· (y
64
125y
63
+ ··· 105577704y + 5031049)
c
4
, c
8
, c
9
c
12
(y 1)(y
13
11y
12
+ ··· + 10y 1)(y
26
18y
25
+ ··· 13y + 1)
· (y
64
113y
63
+ ··· + 2826260y + 151321)
c
6
, c
7
, c
10
y(y
13
+ 14y
12
+ ··· + 30y 1)(y
26
+ 23y
25
+ ··· + 2176y + 256)
· (y
32
+ 36y
31
+ ··· 224y + 1)
2
28