10
96
(K10a
24
)
A knot diagram
1
Linearized knot diagam
9 6 1 7 3 10 4 2 8 5
Solving Sequence
2,8
9 10
1,4
3 7 5 6
c
8
c
9
c
1
c
3
c
7
c
4
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−5272122u
17
+ 4798544u
16
+ ··· + 51537967b + 28315457,
38859701u
17
+ 11491400u
16
+ ··· + 206151868a 139434563,
u
18
+ 4u
16
+ 9u
14
u
13
+ 12u
12
3u
11
+ 11u
10
5u
9
+ 8u
8
+ 4u
7
+ 2u
6
+ 6u
5
+ 8u
4
+ 7u
3
+ u
2
+ 3u + 4i
I
u
2
= hu
14
a 2u
14
+ ··· 2a 1, 2u
14
a + 2u
14
+ ··· + a
2
+ 4a,
u
15
u
14
+ 4u
13
3u
12
+ 8u
11
6u
10
+ 10u
9
7u
8
+ 8u
7
6u
6
+ 6u
5
4u
4
+ 4u
3
2u
2
+ 2u 1i
I
u
3
= hb 1, 2a + 2u + 3, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.27 × 10
6
u
17
+ 4.80 × 10
6
u
16
+ · · · + 5.15 × 10
7
b + 2.83 × 10
7
, 3.89 ×
10
7
u
17
+1.15×10
7
u
16
+· · ·+2.06×10
8
a1.39×10
8
, u
18
+4u
16
+· · ·+3u +4i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.188500u
17
0.0557424u
16
+ ··· + 0.154930u + 0.676368
0.102296u
17
0.0931070u
16
+ ··· 0.813721u 0.549410
a
3
=
0.166761u
17
0.0607885u
16
+ ··· + 0.283272u + 1.04603
0.0148237u
17
0.207715u
16
+ ··· 0.870244u 0.939258
a
7
=
0.234815u
17
+ 0.0148237u
16
+ ··· 0.790765u 0.165801
0.0607885u
17
+ 0.189164u
16
+ ··· + 1.54632u + 0.667045
a
5
=
0.373129u
17
0.128980u
16
+ ··· + 0.922103u + 1.59149
0.128980u
17
0.289335u
16
+ ··· 2.71088u 1.49252
a
6
=
0.137352u
17
+ 0.102296u
16
+ ··· 0.248070u 0.401663
0.0557424u
17
+ 0.123431u
16
+ ··· + 1.24187u + 0.754001
(ii) Obstruction class = 1
(iii) Cusp Shapes =
23479367
51537967
u
17
127343919
206151868
u
16
+ ··· +
657635827
206151868
u +
414460539
51537967
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
18
+ 4u
16
+ ··· 3u + 4
c
2
, c
4
, c
5
c
7
u
18
2u
17
+ ··· u + 1
c
3
, c
6
4(4u
18
6u
17
+ ··· + u + 1)
c
9
u
18
+ 8u
17
+ ··· u + 16
c
10
u
18
+ 3u
17
+ ··· + 120u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
18
+ 8y
17
+ ··· y + 16
c
2
, c
4
, c
5
c
7
y
18
+ 8y
17
+ ··· + 17y + 1
c
3
, c
6
16(16y
18
28y
17
+ ··· + 11y + 1)
c
9
y
18
+ 4y
17
+ ··· + 735y + 256
c
10
y
18
5y
17
+ ··· 4288y + 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.954364 + 0.371541I
a = 0.854485 + 0.746417I
b = 0.527077 1.253950I
3.68268 9.36876I 0.27355 + 5.71519I
u = 0.954364 0.371541I
a = 0.854485 0.746417I
b = 0.527077 + 1.253950I
3.68268 + 9.36876I 0.27355 5.71519I
u = 0.495157 + 0.969336I
a = 0.811360 1.129300I
b = 1.278490 + 0.262032I
1.41086 + 2.64017I 3.75807 9.26255I
u = 0.495157 0.969336I
a = 0.811360 + 1.129300I
b = 1.278490 0.262032I
1.41086 2.64017I 3.75807 + 9.26255I
u = 0.567357 + 0.706169I
a = 0.421889 0.044039I
b = 0.123272 + 0.375141I
0.11776 1.42471I 0.46661 + 2.50425I
u = 0.567357 0.706169I
a = 0.421889 + 0.044039I
b = 0.123272 0.375141I
0.11776 + 1.42471I 0.46661 2.50425I
u = 0.501769 + 0.662267I
a = 1.69141 0.67535I
b = 1.010020 0.434093I
2.35859 + 1.45777I 5.68941 + 2.64543I
u = 0.501769 0.662267I
a = 1.69141 + 0.67535I
b = 1.010020 + 0.434093I
2.35859 1.45777I 5.68941 2.64543I
u = 0.881883 + 0.896090I
a = 0.838759 + 0.128282I
b = 0.278239 0.862332I
0.64162 4.35809I 2.09542 + 8.94470I
u = 0.881883 0.896090I
a = 0.838759 0.128282I
b = 0.278239 + 0.862332I
0.64162 + 4.35809I 2.09542 8.94470I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.715844 + 0.165207I
a = 0.153155 + 0.140793I
b = 0.254607 + 0.632963I
0.38947 1.38737I 5.20835 + 5.01616I
u = 0.715844 0.165207I
a = 0.153155 0.140793I
b = 0.254607 0.632963I
0.38947 + 1.38737I 5.20835 5.01616I
u = 0.644327 + 1.178320I
a = 1.77812 + 0.47961I
b = 0.57190 + 1.33178I
6.1478 + 15.1779I 2.47148 8.89088I
u = 0.644327 1.178320I
a = 1.77812 0.47961I
b = 0.57190 1.33178I
6.1478 15.1779I 2.47148 + 8.89088I
u = 0.123550 + 1.355420I
a = 0.009343 0.587707I
b = 0.343795 1.275010I
9.80486 5.84779I 6.18830 + 4.95030I
u = 0.123550 1.355420I
a = 0.009343 + 0.587707I
b = 0.343795 + 1.275010I
9.80486 + 5.84779I 6.18830 4.95030I
u = 0.554083 + 1.298630I
a = 0.871664 + 0.626444I
b = 0.301163 + 1.054570I
3.73889 6.36829I 2.64340 + 9.34206I
u = 0.554083 1.298630I
a = 0.871664 0.626444I
b = 0.301163 1.054570I
3.73889 + 6.36829I 2.64340 9.34206I
6
II. I
u
2
=
hu
14
a2u
14
+· · ·2a1, 2u
14
a+2u
14
+· · ·+a
2
+4a, u
15
u
14
+· · ·+2u1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
u
14
a + 2u
14
+ ··· + 2a + 1
a
3
=
3u
13
a 3u
14
+ ··· 2a 2
2u
14
a + 2u
14
+ ··· + 2a + 2
a
7
=
2u
14
a + 4u
13
a + ··· a + 5
3u
14
a u
14
+ ··· 4u + 1
a
5
=
u
14
+ 3u
12
+ 6u
10
+ 7u
8
+ 6u
6
+ 4u
4
+ 2u
2
+ 1
u
14
+ u
13
+ ··· + u 1
a
6
=
2u
14
a u
14
+ ··· 2u + 4
2u
14
2u
13
+ ··· au 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
13
4u
12
+12u
11
12u
10
+20u
9
24u
8
+20u
7
24u
6
+16u
5
16u
4
+16u
3
8u
2
+8u6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
15
+ u
14
+ ··· + 2u + 1)
2
c
2
, c
4
, c
5
c
7
u
30
+ 5u
29
+ ··· + 2u + 1
c
3
, c
6
u
30
+ u
29
+ ··· 162u + 29
c
9
(u
15
+ 7u
14
+ ··· + 4u
2
1)
2
c
10
(u
15
u
14
+ ··· + 2u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
15
+ 7y
14
+ ··· + 4y
2
1)
2
c
2
, c
4
, c
5
c
7
y
30
+ 19y
29
+ ··· 20y
2
+ 1
c
3
, c
6
y
30
13y
29
+ ··· + 21316y + 841
c
9
(y
15
+ 3y
14
+ ··· + 8y 1)
2
c
10
(y
15
5y
14
+ ··· + 12y
3
1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.385605 + 0.867795I
a = 3.01190 + 0.62486I
b = 0.160281 0.896058I
3.64104 1.66084I 1.51042 + 3.96405I
u = 0.385605 + 0.867795I
a = 0.98340 + 3.53440I
b = 0.081650 + 1.113800I
3.64104 1.66084I 1.51042 + 3.96405I
u = 0.385605 0.867795I
a = 3.01190 0.62486I
b = 0.160281 + 0.896058I
3.64104 + 1.66084I 1.51042 3.96405I
u = 0.385605 0.867795I
a = 0.98340 3.53440I
b = 0.081650 1.113800I
3.64104 + 1.66084I 1.51042 3.96405I
u = 0.146928 + 1.062740I
a = 0.532247 + 0.803689I
b = 0.235764 + 1.349700I
5.11062 2.07402I 3.82822 + 2.67122I
u = 0.146928 + 1.062740I
a = 0.336119 + 0.803807I
b = 0.789375 0.319437I
5.11062 2.07402I 3.82822 + 2.67122I
u = 0.146928 1.062740I
a = 0.532247 0.803689I
b = 0.235764 1.349700I
5.11062 + 2.07402I 3.82822 2.67122I
u = 0.146928 1.062740I
a = 0.336119 0.803807I
b = 0.789375 + 0.319437I
5.11062 + 2.07402I 3.82822 2.67122I
u = 0.715401 + 0.518352I
a = 0.495626 + 0.162788I
b = 0.253544 + 0.465102I
0.24352 1.50523I 4.15133 + 2.74048I
u = 0.715401 + 0.518352I
a = 0.203961 0.302035I
b = 0.220274 + 0.713343I
0.24352 1.50523I 4.15133 + 2.74048I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.715401 0.518352I
a = 0.495626 0.162788I
b = 0.253544 0.465102I
0.24352 + 1.50523I 4.15133 2.74048I
u = 0.715401 0.518352I
a = 0.203961 + 0.302035I
b = 0.220274 0.713343I
0.24352 + 1.50523I 4.15133 2.74048I
u = 0.758945 + 0.422629I
a = 0.732399 1.007910I
b = 0.549307 + 1.203290I
0.27297 4.09199I 3.04427 + 3.15094I
u = 0.758945 + 0.422629I
a = 1.52820 + 0.36163I
b = 0.930770 + 0.153909I
0.27297 4.09199I 3.04427 + 3.15094I
u = 0.758945 0.422629I
a = 0.732399 + 1.007910I
b = 0.549307 1.203290I
0.27297 + 4.09199I 3.04427 3.15094I
u = 0.758945 0.422629I
a = 1.52820 0.36163I
b = 0.930770 0.153909I
0.27297 + 4.09199I 3.04427 3.15094I
u = 0.426893 + 1.085670I
a = 0.497713 0.065950I
b = 0.38528 1.46920I
7.49803 + 3.60340I 6.16372 4.47672I
u = 0.426893 + 1.085670I
a = 1.91914 + 0.58198I
b = 0.672463 + 1.225340I
7.49803 + 3.60340I 6.16372 4.47672I
u = 0.426893 1.085670I
a = 0.497713 + 0.065950I
b = 0.38528 + 1.46920I
7.49803 3.60340I 6.16372 + 4.47672I
u = 0.426893 1.085670I
a = 1.91914 0.58198I
b = 0.672463 1.225340I
7.49803 3.60340I 6.16372 + 4.47672I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.594997 + 1.040830I
a = 1.57156 0.42279I
b = 0.212345 0.992556I
1.30682 3.51852I 1.71302 + 2.59027I
u = 0.594997 + 1.040830I
a = 0.257459 0.239199I
b = 0.368301 0.106759I
1.30682 3.51852I 1.71302 + 2.59027I
u = 0.594997 1.040830I
a = 1.57156 + 0.42279I
b = 0.212345 + 0.992556I
1.30682 + 3.51852I 1.71302 2.59027I
u = 0.594997 1.040830I
a = 0.257459 + 0.239199I
b = 0.368301 + 0.106759I
1.30682 + 3.51852I 1.71302 2.59027I
u = 0.594032 + 1.095620I
a = 0.858900 + 0.821598I
b = 1.119760 0.096018I
2.26357 + 9.21780I 0.14540 7.39135I
u = 0.594032 + 1.095620I
a = 1.85470 0.46519I
b = 0.61782 1.34369I
2.26357 + 9.21780I 0.14540 7.39135I
u = 0.594032 1.095620I
a = 0.858900 0.821598I
b = 1.119760 + 0.096018I
2.26357 9.21780I 0.14540 + 7.39135I
u = 0.594032 1.095620I
a = 1.85470 + 0.46519I
b = 0.61782 + 1.34369I
2.26357 9.21780I 0.14540 + 7.39135I
u = 0.538411
a = 1.79974 + 1.43818I
b = 0.369866 1.187600I
4.71415 2.56340
u = 0.538411
a = 1.79974 1.43818I
b = 0.369866 + 1.187600I
4.71415 2.56340
12
III. I
u
3
= hb 1, 2a + 2u + 3, u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
9
=
1
u + 1
a
10
=
u
u + 1
a
1
=
u
u + 1
a
4
=
u
3
2
1
a
3
=
u 1
1
2
u + 1
a
7
=
u
1
2
1
a
5
=
2u 2
2
a
6
=
u 1
1
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u + 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
u + 1
c
2
, c
4
(u + 1)
2
c
3
4(4u
2
+ 2u + 1)
c
5
, c
7
(u 1)
2
c
6
4(4u
2
2u + 1)
c
8
, c
9
u
2
+ u + 1
c
10
u
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
9
y
2
+ y + 1
c
2
, c
4
, c
5
c
7
(y 1)
2
c
3
, c
6
16(16y
2
+ 4y + 1)
c
10
y
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.000000 0.866025I
b = 1.00000
1.64493 2.02988I 1.87500 + 0.21651I
u = 0.500000 0.866025I
a = 1.000000 + 0.866025I
b = 1.00000
1.64493 + 2.02988I 1.87500 0.21651I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
15
+ u
14
+ ··· + 2u + 1)
2
(u
18
+ 4u
16
+ ··· 3u + 4)
c
2
, c
4
((u + 1)
2
)(u
18
2u
17
+ ··· u + 1)(u
30
+ 5u
29
+ ··· + 2u + 1)
c
3
16(4u
2
+ 2u + 1)(4u
18
6u
17
+ ··· + u + 1)(u
30
+ u
29
+ ··· 162u + 29)
c
5
, c
7
((u 1)
2
)(u
18
2u
17
+ ··· u + 1)(u
30
+ 5u
29
+ ··· + 2u + 1)
c
6
16(4u
2
2u + 1)(4u
18
6u
17
+ ··· + u + 1)(u
30
+ u
29
+ ··· 162u + 29)
c
8
(u
2
+ u + 1)(u
15
+ u
14
+ ··· + 2u + 1)
2
(u
18
+ 4u
16
+ ··· 3u + 4)
c
9
(u
2
+ u + 1)(u
15
+ 7u
14
+ ··· + 4u
2
1)
2
(u
18
+ 8u
17
+ ··· u + 16)
c
10
u
2
(u
15
u
14
+ ··· + 2u 1)
2
(u
18
+ 3u
17
+ ··· + 120u + 32)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
+ y + 1)(y
15
+ 7y
14
+ ··· + 4y
2
1)
2
(y
18
+ 8y
17
+ ··· y + 16)
c
2
, c
4
, c
5
c
7
((y 1)
2
)(y
18
+ 8y
17
+ ··· + 17y + 1)(y
30
+ 19y
29
+ ··· 20y
2
+ 1)
c
3
, c
6
256(16y
2
+ 4y + 1)(16y
18
28y
17
+ ··· + 11y + 1)
· (y
30
13y
29
+ ··· + 21316y + 841)
c
9
(y
2
+ y + 1)(y
15
+ 3y
14
+ ··· + 8y 1)
2
· (y
18
+ 4y
17
+ ··· + 735y + 256)
c
10
y
2
(y
15
5y
14
+ ··· + 12y
3
1)
2
(y
18
5y
17
+ ··· 4288y + 1024)
18