12a
1009
(K12a
1009
)
A knot diagram
1
Linearized knot diagam
4 6 12 1 9 10 11 3 2 7 8 5
Solving Sequence
7,10
11 8 12
2,6
3 4 1 9 5
c
10
c
7
c
11
c
6
c
2
c
3
c
1
c
9
c
5
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.83377 × 10
70
u
70
9.54793 × 10
70
u
69
+ ··· + 1.77999 × 10
69
b + 4.28601 × 10
70
,
1.01200 × 10
71
u
70
3.39563 × 10
71
u
69
+ ··· + 5.33996 × 10
69
a + 1.38029 × 10
71
,
u
71
+ 4u
70
+ ··· 11u 1i
I
u
2
= hb a, a
3
a
2
+ 1, u + 1i
* 2 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.83 × 10
70
u
70
9.55 × 10
70
u
69
+ · · · + 1.78 × 10
69
b + 4.29 ×
10
70
, 1.01 × 10
71
u
70
3.40 × 10
71
u
69
+ · · · + 5.34 × 10
69
a + 1.38 ×
10
71
, u
71
+ 4u
70
+ · · · 11u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
18.9514u
70
+ 63.5891u
69
+ ··· 271.927u 25.8484
15.9202u
70
+ 53.6404u
69
+ ··· 234.194u 24.0789
a
6
=
u
u
a
3
=
17.2006u
70
+ 58.3127u
69
+ ··· 251.019u 23.6721
14.1693u
70
+ 48.3641u
69
+ ··· 213.286u 21.9026
a
4
=
19.8181u
70
+ 66.3472u
69
+ ··· 282.283u 27.5349
18.5251u
70
+ 62.2805u
69
+ ··· 268.012u 27.5305
a
1
=
1.01917u
70
+ 3.16140u
69
+ ··· 3.40337u + 1.44731
1.16536u
70
+ 3.78779u
69
+ ··· 5.87924u 0.221025
a
9
=
5.05082u
70
+ 17.2412u
69
+ ··· 52.3212u 5.84505
6.62995u
70
+ 22.6456u
69
+ ··· 101.441u 10.8064
a
5
=
2.46549u
70
+ 7.58181u
69
+ ··· 26.3911u 4.12137
2.46549u
70
+ 7.58181u
69
+ ··· 26.3911u 3.12137
(ii) Obstruction class = 1
(iii) Cusp Shapes = 97.9174u
70
336.151u
69
+ ··· + 1510.09u + 154.499
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
u
71
2u
70
+ ··· 8u 1
c
2
u
71
5u
70
+ ··· + 12u 8
c
3
u
71
+ 2u
70
+ ··· 14304u 929
c
5
u
71
4u
70
+ ··· + 3u 1
c
6
, c
7
, c
10
c
11
u
71
+ 4u
70
+ ··· 11u 1
c
8
u
71
22u
69
+ ··· 460924u 201793
c
9
u
71
2u
70
+ ··· 1978u 169
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
12
y
71
+ 60y
70
+ ··· + 40y 1
c
2
y
71
+ 21y
70
+ ··· + 720y 64
c
3
y
71
36y
70
+ ··· + 30160512y 863041
c
5
y
71
+ 2y
70
+ ··· 3y 1
c
6
, c
7
, c
10
c
11
y
71
86y
70
+ ··· 3y 1
c
8
y
71
44y
70
+ ··· 833663350352y 40720414849
c
9
y
71
96y
70
+ ··· + 7503396y 28561
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.916330 + 0.404967I
a = 1.41839 0.68949I
b = 1.089920 + 0.667509I
2.48396 4.29702I 0
u = 0.916330 0.404967I
a = 1.41839 + 0.68949I
b = 1.089920 0.667509I
2.48396 + 4.29702I 0
u = 0.797905 + 0.667654I
a = 0.407468 + 0.747440I
b = 0.939564 + 0.123379I
0.64412 + 3.87490I 0
u = 0.797905 0.667654I
a = 0.407468 0.747440I
b = 0.939564 0.123379I
0.64412 3.87490I 0
u = 0.919544 + 0.509968I
a = 1.38427 + 0.50220I
b = 1.18719 0.81000I
4.93660 8.62281I 0
u = 0.919544 0.509968I
a = 1.38427 0.50220I
b = 1.18719 + 0.81000I
4.93660 + 8.62281I 0
u = 0.899669 + 0.567468I
a = 1.343630 0.396527I
b = 1.21545 + 0.90921I
0.03199 12.75630I 0
u = 0.899669 0.567468I
a = 1.343630 + 0.396527I
b = 1.21545 0.90921I
0.03199 + 12.75630I 0
u = 0.902665 + 0.602685I
a = 0.299774 0.774692I
b = 0.802092 0.207826I
4.42813 + 0.27103I 0
u = 0.902665 0.602685I
a = 0.299774 + 0.774692I
b = 0.802092 + 0.207826I
4.42813 0.27103I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16620
a = 0.362381
b = 0.0637371
2.18683 0
u = 1.013430 + 0.583657I
a = 0.183762 + 0.842968I
b = 0.696701 + 0.328940I
0.31480 3.35362I 0
u = 1.013430 0.583657I
a = 0.183762 0.842968I
b = 0.696701 0.328940I
0.31480 + 3.35362I 0
u = 0.811667 + 0.167450I
a = 1.56180 1.25295I
b = 0.749957 + 0.379899I
1.94355 3.45136I 0
u = 0.811667 0.167450I
a = 1.56180 + 1.25295I
b = 0.749957 0.379899I
1.94355 + 3.45136I 0
u = 0.012443 + 0.826554I
a = 0.185238 0.013310I
b = 0.906553 + 0.727576I
2.73486 + 8.14282I 0
u = 0.012443 0.826554I
a = 0.185238 + 0.013310I
b = 0.906553 0.727576I
2.73486 8.14282I 0
u = 0.788810 + 0.056736I
a = 2.20931 1.28447I
b = 0.586607 0.039795I
3.91288 1.17863I 20.7772 + 5.1029I
u = 0.788810 0.056736I
a = 2.20931 + 1.28447I
b = 0.586607 + 0.039795I
3.91288 + 1.17863I 20.7772 5.1029I
u = 0.750230 + 0.210776I
a = 2.28809 + 0.97667I
b = 0.475905 + 0.328068I
1.15173 5.50599I 6.00000 + 10.13859I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.750230 0.210776I
a = 2.28809 0.97667I
b = 0.475905 0.328068I
1.15173 + 5.50599I 6.00000 10.13859I
u = 0.057589 + 0.774983I
a = 0.130444 + 0.204956I
b = 0.917161 0.614056I
1.95781 + 4.36004I 9.73775 6.33857I
u = 0.057589 0.774983I
a = 0.130444 0.204956I
b = 0.917161 + 0.614056I
1.95781 4.36004I 9.73775 + 6.33857I
u = 0.642028 + 0.410757I
a = 0.750353 + 0.843964I
b = 0.684830 0.915401I
5.36047 4.61297I 2.63206 + 7.81095I
u = 0.642028 0.410757I
a = 0.750353 0.843964I
b = 0.684830 + 0.915401I
5.36047 + 4.61297I 2.63206 7.81095I
u = 0.221305 + 0.702040I
a = 0.093157 0.497861I
b = 0.965469 + 0.417790I
0.956547 + 0.819716I 7.05042 3.17652I
u = 0.221305 0.702040I
a = 0.093157 + 0.497861I
b = 0.965469 0.417790I
0.956547 0.819716I 7.05042 + 3.17652I
u = 1.253580 + 0.245545I
a = 0.451351 0.533518I
b = 0.095832 0.256473I
1.87673 + 1.66795I 0
u = 1.253580 0.245545I
a = 0.451351 + 0.533518I
b = 0.095832 + 0.256473I
1.87673 1.66795I 0
u = 0.689252 + 0.066561I
a = 3.77196 0.35800I
b = 3.28529 0.34701I
1.80845 + 2.97035I 27.2900 + 10.8535I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.689252 0.066561I
a = 3.77196 + 0.35800I
b = 3.28529 + 0.34701I
1.80845 2.97035I 27.2900 10.8535I
u = 0.674572
a = 3.82901
b = 3.39142
2.27556 45.0080
u = 0.649970 + 0.157969I
a = 0.715941 + 0.100560I
b = 0.728948 0.515381I
1.239550 + 0.397962I 8.72729 0.25235I
u = 0.649970 0.157969I
a = 0.715941 0.100560I
b = 0.728948 + 0.515381I
1.239550 0.397962I 8.72729 + 0.25235I
u = 0.248104 + 0.573900I
a = 1.127820 + 0.073338I
b = 0.440596 0.654495I
6.54466 + 1.22183I 0.937262 0.719785I
u = 0.248104 0.573900I
a = 1.127820 0.073338I
b = 0.440596 + 0.654495I
6.54466 1.22183I 0.937262 + 0.719785I
u = 0.418442 + 0.184487I
a = 2.67657 + 0.89298I
b = 1.54879 + 0.72191I
2.23688 2.23181I 2.34161 + 7.40187I
u = 0.418442 0.184487I
a = 2.67657 0.89298I
b = 1.54879 0.72191I
2.23688 + 2.23181I 2.34161 7.40187I
u = 1.54364 + 0.03606I
a = 2.07634 + 0.16337I
b = 1.72830 + 0.61768I
4.29068 2.11335I 0
u = 1.54364 0.03606I
a = 2.07634 0.16337I
b = 1.72830 0.61768I
4.29068 + 2.11335I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.027766 + 0.439550I
a = 0.616350 1.062520I
b = 0.655258 + 0.345763I
0.73320 + 1.40973I 1.20605 3.84392I
u = 0.027766 0.439550I
a = 0.616350 + 1.062520I
b = 0.655258 0.345763I
0.73320 1.40973I 1.20605 + 3.84392I
u = 1.60578 + 0.08607I
a = 1.287790 0.085996I
b = 0.851120 1.100430I
2.34616 + 6.29316I 0
u = 1.60578 0.08607I
a = 1.287790 + 0.085996I
b = 0.851120 + 1.100430I
2.34616 6.29316I 0
u = 1.62936 + 0.03391I
a = 1.093500 0.875100I
b = 0.96393 1.30038I
9.26887 1.05823I 0
u = 1.62936 0.03391I
a = 1.093500 + 0.875100I
b = 0.96393 + 1.30038I
9.26887 + 1.05823I 0
u = 1.63403
a = 3.86249
b = 3.49963
10.4426 0
u = 1.63409 + 0.02399I
a = 3.55343 + 0.22314I
b = 3.14434 + 0.32055I
6.38831 3.34830I 0
u = 1.63409 0.02399I
a = 3.55343 0.22314I
b = 3.14434 0.32055I
6.38831 + 3.34830I 0
u = 1.64131 + 0.04793I
a = 1.75205 + 0.63284I
b = 0.658185 0.009831I
7.20909 + 6.42648I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.64131 0.04793I
a = 1.75205 0.63284I
b = 0.658185 + 0.009831I
7.20909 6.42648I 0
u = 1.65355 + 0.01136I
a = 1.75280 0.69764I
b = 0.698957 + 0.215320I
12.50500 + 1.41291I 0
u = 1.65355 0.01136I
a = 1.75280 + 0.69764I
b = 0.698957 0.215320I
12.50500 1.41291I 0
u = 1.65390 + 0.03334I
a = 1.55282 0.51867I
b = 0.800340 + 0.545581I
10.56950 + 4.14320I 0
u = 1.65390 0.03334I
a = 1.55282 + 0.51867I
b = 0.800340 0.545581I
10.56950 4.14320I 0
u = 1.67951 + 0.11538I
a = 1.84477 0.04028I
b = 1.28310 + 0.83407I
11.49190 + 6.36006I 0
u = 1.67951 0.11538I
a = 1.84477 + 0.04028I
b = 1.28310 0.83407I
11.49190 6.36006I 0
u = 1.67267 + 0.19634I
a = 1.242390 + 0.481250I
b = 1.087260 0.168561I
9.10774 7.22720I 0
u = 1.67267 0.19634I
a = 1.242390 0.481250I
b = 1.087260 + 0.168561I
9.10774 + 7.22720I 0
u = 1.67935 + 0.16443I
a = 2.00330 + 0.17615I
b = 1.48667 + 0.99930I
8.8172 + 15.6243I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.67935 0.16443I
a = 2.00330 0.17615I
b = 1.48667 0.99930I
8.8172 15.6243I 0
u = 1.68414 + 0.14421I
a = 1.95556 0.07671I
b = 1.41912 0.91577I
13.9245 + 11.1963I 0
u = 1.68414 0.14421I
a = 1.95556 + 0.07671I
b = 1.41912 + 0.91577I
13.9245 11.1963I 0
u = 1.69608 + 0.16003I
a = 1.070460 0.423461I
b = 0.938968 + 0.203592I
13.44530 3.25448I 0
u = 1.69608 0.16003I
a = 1.070460 + 0.423461I
b = 0.938968 0.203592I
13.44530 + 3.25448I 0
u = 0.008362 + 0.294687I
a = 2.44024 0.48075I
b = 0.419854 + 1.049640I
3.27067 + 3.66399I 0.860825 0.895430I
u = 0.008362 0.294687I
a = 2.44024 + 0.48075I
b = 0.419854 1.049640I
3.27067 3.66399I 0.860825 + 0.895430I
u = 1.72348 + 0.11551I
a = 0.803597 + 0.371179I
b = 0.707949 0.235462I
10.04190 + 0.66192I 0
u = 1.72348 0.11551I
a = 0.803597 0.371179I
b = 0.707949 + 0.235462I
10.04190 0.66192I 0
u = 0.146978 + 0.147957I
a = 3.53532 0.76333I
b = 0.722322 0.678600I
1.35611 + 0.52258I 7.48776 + 0.18415I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.146978 0.147957I
a = 3.53532 + 0.76333I
b = 0.722322 + 0.678600I
1.35611 0.52258I 7.48776 0.18415I
12
II. I
u
2
= hb a, a
3
a
2
+ 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
12
=
0
1
a
2
=
a
a
a
6
=
1
1
a
3
=
a
a
a
4
=
a
2a
a
1
=
a
2
+ a + 1
2a
2
+ a + 2
a
9
=
a
2
+ 1
a
2
a
5
=
a
2
a
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
+ 5a 11
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
u
3
u
2
+ 2u 1
c
2
u
3
c
3
, c
8
, c
9
u
3
u
2
+ 1
c
4
u
3
+ u
2
+ 2u + 1
c
5
, c
6
, c
7
(u 1)
3
c
10
, c
11
(u + 1)
3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
y
3
c
3
, c
8
, c
9
y
3
y
2
+ 2y 1
c
5
, c
6
, c
7
c
10
, c
11
(y 1)
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.877439 + 0.744862I
b = 0.877439 + 0.744862I
1.37919 2.82812I 6.82789 + 2.41717I
u = 1.00000
a = 0.877439 0.744862I
b = 0.877439 0.744862I
1.37919 + 2.82812I 6.82789 2.41717I
u = 1.00000
a = 0.754878
b = 0.754878
2.75839 15.3440
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
12
(u
3
u
2
+ 2u 1)(u
71
2u
70
+ ··· 8u 1)
c
2
u
3
(u
71
5u
70
+ ··· + 12u 8)
c
3
(u
3
u
2
+ 1)(u
71
+ 2u
70
+ ··· 14304u 929)
c
4
(u
3
+ u
2
+ 2u + 1)(u
71
2u
70
+ ··· 8u 1)
c
5
((u 1)
3
)(u
71
4u
70
+ ··· + 3u 1)
c
6
, c
7
((u 1)
3
)(u
71
+ 4u
70
+ ··· 11u 1)
c
8
(u
3
u
2
+ 1)(u
71
22u
69
+ ··· 460924u 201793)
c
9
(u
3
u
2
+ 1)(u
71
2u
70
+ ··· 1978u 169)
c
10
, c
11
((u + 1)
3
)(u
71
+ 4u
70
+ ··· 11u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
12
(y
3
+ 3y
2
+ 2y 1)(y
71
+ 60y
70
+ ··· + 40y 1)
c
2
y
3
(y
71
+ 21y
70
+ ··· + 720y 64)
c
3
(y
3
y
2
+ 2y 1)(y
71
36y
70
+ ··· + 3.01605 × 10
7
y 863041)
c
5
((y 1)
3
)(y
71
+ 2y
70
+ ··· 3y 1)
c
6
, c
7
, c
10
c
11
((y 1)
3
)(y
71
86y
70
+ ··· 3y 1)
c
8
(y
3
y
2
+ 2y 1)
· (y
71
44y
70
+ ··· 833663350352y 40720414849)
c
9
(y
3
y
2
+ 2y 1)(y
71
96y
70
+ ··· + 7503396y 28561)
18