12a
1023
(K12a
1023
)
A knot diagram
1
Linearized knot diagam
4 7 8 9 11 12 3 2 1 5 6 10
Solving Sequence
2,7
3 8 4 9 5 1 10 11 12 6
c
2
c
7
c
3
c
8
c
4
c
1
c
9
c
10
c
12
c
6
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
63
u
62
+ ··· + 4u
3
1i
* 1 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
63
u
62
+ · · · + 4u
3
1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
5
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
10
=
u
17
8u
15
+ 25u
13
36u
11
+ 19u
9
+ 4u
7
2u
5
4u
3
+ u
u
19
+ 9u
17
32u
15
+ 55u
13
43u
11
+ 9u
9
+ 4u
5
u
3
+ u
a
11
=
u
39
18u
37
+ ··· 6u
5
6u
3
u
39
17u
37
+ ··· + 3u
5
+ u
a
12
=
u
28
13u
26
+ ··· + u
2
+ 1
u
30
+ 14u
28
+ ··· 4u
4
u
2
a
6
=
u
57
26u
55
+ ··· + 2u
3
+ u
u
59
+ 27u
57
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
61
112u
59
+ ··· + 4u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
63
13u
62
+ ··· + 5048u 367
c
2
, c
3
, c
7
u
63
+ u
62
+ ··· + 4u
3
+ 1
c
4
u
63
u
62
+ ··· 16u + 1
c
5
, c
6
, c
10
c
11
u
63
+ u
62
+ ··· 2u
4
+ 1
c
8
u
63
3u
62
+ ··· 14u + 1
c
9
, c
12
u
63
11u
62
+ ··· + 1032u 113
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 23y
62
+ ··· + 185728y 134689
c
2
, c
3
, c
7
y
63
57y
62
+ ··· + 12y
2
1
c
4
y
63
y
62
+ ··· 64y 1
c
5
, c
6
, c
10
c
11
y
63
69y
62
+ ··· + 4y
2
1
c
8
y
63
5y
62
+ ··· + 96y 1
c
9
, c
12
y
63
+ 39y
62
+ ··· 28816y 12769
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.05857
0.871869 9.57900
u = 1.124880 + 0.212975I
4.94868 6.91271I 0
u = 1.124880 0.212975I
4.94868 + 6.91271I 0
u = 1.148860 + 0.182186I
2.18519 + 4.53135I 0
u = 1.148860 0.182186I
2.18519 4.53135I 0
u = 0.830553 + 0.042703I
8.69415 + 0.00048I 9.30642 + 0.15839I
u = 0.830553 0.042703I
8.69415 0.00048I 9.30642 0.15839I
u = 1.190630 + 0.128855I
2.84482 1.03901I 0
u = 1.190630 0.128855I
2.84482 + 1.03901I 0
u = 0.307202 + 0.707160I
5.43312 10.27260I 7.72829 + 7.96510I
u = 0.307202 0.707160I
5.43312 + 10.27260I 7.72829 7.96510I
u = 0.311428 + 0.693681I
1.68556 + 7.55058I 4.18504 9.18442I
u = 0.311428 0.693681I
1.68556 7.55058I 4.18504 + 9.18442I
u = 0.317156 + 0.675863I
2.25968 3.54520I 2.30097 + 2.95262I
u = 0.317156 0.675863I
2.25968 + 3.54520I 2.30097 2.95262I
u = 0.615511 + 0.402928I
4.21282 + 6.36699I 5.11968 2.58502I
u = 0.615511 0.402928I
4.21282 6.36699I 5.11968 + 2.58502I
u = 0.336084 + 0.649282I
3.64458 + 1.06314I 5.63466 3.13287I
u = 0.336084 0.649282I
3.64458 1.06314I 5.63466 + 3.13287I
u = 0.218313 + 0.688956I
10.70060 3.40629I 12.54413 + 4.55404I
u = 0.218313 0.688956I
10.70060 + 3.40629I 12.54413 4.55404I
u = 0.577950 + 0.406867I
2.80271 3.72383I 1.35159 + 3.56435I
u = 0.577950 0.406867I
2.80271 + 3.72383I 1.35159 3.56435I
u = 0.229540 + 0.647261I
2.84257 + 2.89752I 11.56820 6.31602I
u = 0.229540 0.647261I
2.84257 2.89752I 11.56820 + 6.31602I
u = 0.495663 + 0.468066I
2.93186 + 2.65024I 3.65682 3.70204I
u = 0.495663 0.468066I
2.93186 2.65024I 3.65682 + 3.70204I
u = 0.533777 + 0.423287I
3.22952 0.19502I 0.24983 + 3.49872I
u = 0.533777 0.423287I
3.22952 + 0.19502I 0.24983 3.49872I
u = 1.303640 + 0.225472I
3.76308 0.34360I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.303640 0.225472I
3.76308 + 0.34360I 0
u = 0.083521 + 0.671063I
8.05532 + 3.57894I 11.69365 1.74226I
u = 0.083521 0.671063I
8.05532 3.57894I 11.69365 + 1.74226I
u = 1.32555
2.93780 0
u = 1.350050 + 0.193271I
3.40243 1.30144I 0
u = 1.350050 0.193271I
3.40243 + 1.30144I 0
u = 0.070290 + 0.619087I
1.00852 1.48110I 8.78123 + 3.67726I
u = 0.070290 0.619087I
1.00852 + 1.48110I 8.78123 3.67726I
u = 1.389370 + 0.217872I
4.99399 + 3.97068I 0
u = 1.389370 0.217872I
4.99399 3.97068I 0
u = 1.382970 + 0.269752I
5.61347 + 6.88488I 0
u = 1.382970 0.269752I
5.61347 6.88488I 0
u = 1.389830 + 0.251114I
2.31904 6.16933I 0
u = 1.389830 0.251114I
2.31904 + 6.16933I 0
u = 0.214690 + 0.530628I
0.156297 1.165440I 2.55431 + 5.45798I
u = 0.214690 0.530628I
0.156297 + 1.165440I 2.55431 5.45798I
u = 1.44160 + 0.15031I
9.44187 + 2.25272I 0
u = 1.44160 0.15031I
9.44187 2.25272I 0
u = 1.44303 + 0.13785I
9.12730 + 1.82675I 0
u = 1.44303 0.13785I
9.12730 1.82675I 0
u = 1.42643 + 0.26226I
7.83985 + 6.97132I 0
u = 1.42643 0.26226I
7.83985 6.97132I 0
u = 1.42926 + 0.25015I
2.00484 4.35421I 0
u = 1.42926 0.25015I
2.00484 + 4.35421I 0
u = 1.44572 + 0.12636I
2.23352 4.59359I 0
u = 1.44572 0.12636I
2.23352 + 4.59359I 0
u = 1.42610 + 0.26976I
7.24522 11.06320I 0
u = 1.42610 0.26976I
7.24522 + 11.06320I 0
u = 1.42568 + 0.27581I
0.10974 + 13.85250I 0
u = 1.42568 0.27581I
0.10974 13.85250I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44329 + 0.16543I
3.21696 4.93771I 0
u = 1.44329 0.16543I
3.21696 + 4.93771I 0
u = 0.481012
1.12974 8.20090
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
63
13u
62
+ ··· + 5048u 367
c
2
, c
3
, c
7
u
63
+ u
62
+ ··· + 4u
3
+ 1
c
4
u
63
u
62
+ ··· 16u + 1
c
5
, c
6
, c
10
c
11
u
63
+ u
62
+ ··· 2u
4
+ 1
c
8
u
63
3u
62
+ ··· 14u + 1
c
9
, c
12
u
63
11u
62
+ ··· + 1032u 113
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 23y
62
+ ··· + 185728y 134689
c
2
, c
3
, c
7
y
63
57y
62
+ ··· + 12y
2
1
c
4
y
63
y
62
+ ··· 64y 1
c
5
, c
6
, c
10
c
11
y
63
69y
62
+ ··· + 4y
2
1
c
8
y
63
5y
62
+ ··· + 96y 1
c
9
, c
12
y
63
+ 39y
62
+ ··· 28816y 12769
9