12a
1024
(K12a
1024
)
A knot diagram
1
Linearized knot diagam
4 7 8 9 11 12 3 2 1 6 5 10
Solving Sequence
2,7
3 8 4 9 5 1 10 12 6 11
c
2
c
7
c
3
c
8
c
4
c
1
c
9
c
12
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
74
+ u
73
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
74
+ u
73
+ · · · u + 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
5
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
10
=
u
17
8u
15
+ 25u
13
36u
11
+ 19u
9
+ 4u
7
2u
5
4u
3
+ u
u
19
+ 9u
17
32u
15
+ 55u
13
43u
11
+ 9u
9
+ 4u
5
u
3
+ u
a
12
=
u
28
13u
26
+ ··· + u
2
+ 1
u
30
+ 14u
28
+ ··· 4u
4
u
2
a
6
=
u
57
26u
55
+ ··· + 2u
3
+ u
u
59
+ 27u
57
+ ··· u
3
+ u
a
11
=
u
50
+ 23u
48
+ ··· + u
2
+ 1
u
50
+ 22u
48
+ ··· 4u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
72
+ 132u
70
+ ··· 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
74
15u
73
+ ··· 21743u + 1519
c
2
, c
3
, c
7
u
74
+ u
73
+ ··· u + 1
c
4
u
74
u
73
+ ··· 55u + 25
c
5
, c
10
, c
11
u
74
u
73
+ ··· u + 1
c
6
u
74
+ u
73
+ ··· 931u + 457
c
8
u
74
3u
73
+ ··· + 15u 1
c
9
, c
12
u
74
11u
73
+ ··· 267u + 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
74
+ 29y
73
+ ··· + 17219705y + 2307361
c
2
, c
3
, c
7
y
74
67y
73
+ ··· + y + 1
c
4
y
74
+ 5y
73
+ ··· 5975y + 625
c
5
, c
10
, c
11
y
74
+ 69y
73
+ ··· + y + 1
c
6
y
74
+ 25y
73
+ ··· + 6053133y + 208849
c
8
y
74
7y
73
+ ··· 195y + 1
c
9
, c
12
y
74
+ 61y
73
+ ··· + 4281y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03301
1.07564 0
u = 1.044940 + 0.102604I
2.61986 + 2.87585I 0
u = 1.044940 0.102604I
2.61986 2.87585I 0
u = 1.156210 + 0.191012I
2.43321 4.72367I 0
u = 1.156210 0.191012I
2.43321 + 4.72367I 0
u = 1.158590 + 0.218669I
8.21260 + 7.93871I 0
u = 1.158590 0.218669I
8.21260 7.93871I 0
u = 1.196130 + 0.144822I
2.98003 + 1.08515I 0
u = 1.196130 0.144822I
2.98003 1.08515I 0
u = 0.320215 + 0.704487I
8.01003 + 11.14000I 0.39689 8.47644I
u = 0.320215 0.704487I
8.01003 11.14000I 0.39689 + 8.47644I
u = 0.315680 + 0.695529I
2.04162 7.74964I 3.30901 + 8.85384I
u = 0.315680 0.695529I
2.04162 + 7.74964I 3.30901 8.85384I
u = 0.338213 + 0.679862I
8.91437 0.94078I 1.86731 + 2.75945I
u = 0.338213 0.679862I
8.91437 + 0.94078I 1.86731 2.75945I
u = 0.320814 + 0.680420I
2.53500 + 3.64664I 1.83229 2.76221I
u = 0.320814 0.680420I
2.53500 3.64664I 1.83229 + 2.76221I
u = 0.600609 + 0.432783I
9.12086 7.18945I 2.91452 + 2.88104I
u = 0.600609 0.432783I
9.12086 + 7.18945I 2.91452 2.88104I
u = 1.244690 + 0.203790I
8.80185 + 1.44373I 0
u = 1.244690 0.203790I
8.80185 1.44373I 0
u = 0.255238 + 0.678124I
1.10543 + 6.03198I 4.27580 8.07217I
u = 0.255238 0.678124I
1.10543 6.03198I 4.27580 + 8.07217I
u = 0.545619 + 0.465386I
9.78040 2.94455I 3.94521 + 3.50317I
u = 0.545619 0.465386I
9.78040 + 2.94455I 3.94521 3.50317I
u = 0.580884 + 0.417872I
3.13814 + 3.88721I 0.60973 3.22333I
u = 0.580884 0.417872I
3.13814 3.88721I 0.60973 + 3.22333I
u = 0.229715 + 0.657701I
3.02571 3.01416I 10.84049 + 5.92197I
u = 0.229715 0.657701I
3.02571 + 3.01416I 10.84049 5.92197I
u = 0.544204 + 0.430911I
3.50761 + 0.14409I 0.63672 3.50408I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.544204 0.430911I
3.50761 0.14409I 0.63672 + 3.50408I
u = 0.180185 + 0.648822I
0.206108 + 0.208045I 6.68575 1.16976I
u = 0.180185 0.648822I
0.206108 0.208045I 6.68575 + 1.16976I
u = 0.043373 + 0.667655I
4.86508 4.63110I 3.42865 + 2.90350I
u = 0.043373 0.667655I
4.86508 + 4.63110I 3.42865 2.90350I
u = 1.344970 + 0.183030I
3.43197 + 1.12512I 0
u = 1.344970 0.183030I
3.43197 1.12512I 0
u = 0.354775 + 0.535609I
5.20691 1.66335I 3.09565 + 4.27561I
u = 0.354775 0.535609I
5.20691 + 1.66335I 3.09565 4.27561I
u = 0.055516 + 0.627489I
0.83877 + 1.62690I 7.90840 3.45819I
u = 0.055516 0.627489I
0.83877 1.62690I 7.90840 + 3.45819I
u = 0.592806 + 0.205238I
2.64797 2.62283I 0.82675 + 2.90416I
u = 0.592806 0.205238I
2.64797 + 2.62283I 0.82675 2.90416I
u = 1.367910 + 0.115025I
8.34672 + 1.48194I 0
u = 1.367910 0.115025I
8.34672 1.48194I 0
u = 1.368940 + 0.243993I
5.12052 3.43600I 0
u = 1.368940 0.243993I
5.12052 + 3.43600I 0
u = 1.385570 + 0.216376I
4.94675 3.91535I 0
u = 1.385570 0.216376I
4.94675 + 3.91535I 0
u = 1.389990 + 0.255951I
2.13515 + 6.33953I 0
u = 1.389990 0.255951I
2.13515 6.33953I 0
u = 1.40031 + 0.26526I
6.38349 9.46596I 0
u = 1.40031 0.26526I
6.38349 + 9.46596I 0
u = 1.42079 + 0.21110I
10.85890 + 4.43876I 0
u = 1.42079 0.21110I
10.85890 4.43876I 0
u = 0.206283 + 0.524313I
0.161322 + 1.134130I 2.63011 5.69236I
u = 0.206283 0.524313I
0.161322 1.134130I 2.63011 + 5.69236I
u = 1.42841 + 0.26365I
8.13467 7.09316I 0
u = 1.42841 0.26365I
8.13467 + 7.09316I 0
u = 1.44510 + 0.14916I
9.77486 2.20808I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44510 0.14916I
9.77486 + 2.20808I 0
u = 1.44646 + 0.13855I
9.50233 1.95720I 0
u = 1.44646 0.13855I
9.50233 + 1.95720I 0
u = 1.42809 + 0.27008I
7.62286 + 11.27000I 0
u = 1.42809 0.27008I
7.62286 11.27000I 0
u = 1.43094 + 0.27329I
13.6165 14.7026I 0
u = 1.43094 0.27329I
13.6165 + 14.7026I 0
u = 1.43495 + 0.26103I
14.5965 + 4.3748I 0
u = 1.43495 0.26103I
14.5965 4.3748I 0
u = 1.45330 + 0.13463I
15.6001 + 5.2588I 0
u = 1.45330 0.13463I
15.6001 5.2588I 0
u = 1.45302 + 0.15468I
16.1228 + 5.1353I 0
u = 1.45302 0.15468I
16.1228 5.1353I 0
u = 0.526726
1.25260 7.49050
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
74
15u
73
+ ··· 21743u + 1519
c
2
, c
3
, c
7
u
74
+ u
73
+ ··· u + 1
c
4
u
74
u
73
+ ··· 55u + 25
c
5
, c
10
, c
11
u
74
u
73
+ ··· u + 1
c
6
u
74
+ u
73
+ ··· 931u + 457
c
8
u
74
3u
73
+ ··· + 15u 1
c
9
, c
12
u
74
11u
73
+ ··· 267u + 11
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
74
+ 29y
73
+ ··· + 17219705y + 2307361
c
2
, c
3
, c
7
y
74
67y
73
+ ··· + y + 1
c
4
y
74
+ 5y
73
+ ··· 5975y + 625
c
5
, c
10
, c
11
y
74
+ 69y
73
+ ··· + y + 1
c
6
y
74
+ 25y
73
+ ··· + 6053133y + 208849
c
8
y
74
7y
73
+ ··· 195y + 1
c
9
, c
12
y
74
+ 61y
73
+ ··· + 4281y + 121
9