12a
1025
(K12a
1025
)
A knot diagram
1
Linearized knot diagam
4 7 8 9 11 12 10 1 2 3 6 5
Solving Sequence
5,11
6 12 7
1,9
4 2 8 3 10
c
5
c
11
c
6
c
12
c
4
c
1
c
8
c
3
c
10
c
2
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−8u
18
37u
17
+ ··· + 2b + 46, 33u
18
+ 154u
17
+ ··· + 8a 196, u
19
+ 6u
18
+ ··· + 4u 8i
I
u
2
= h−3u
10
a 7u
9
a + 3u
8
a + 8u
7
a 13u
6
a 6u
5
a + 8u
4
a 18u
3
a 6u
2
a + 9au + b 8a,
4u
9
a 7u
10
+ ··· + 4a 18, u
11
+ 4u
10
+ 3u
9
4u
8
+ 9u
6
+ u
5
+ 2u
4
+ 12u
3
+ u
2
2u + 4i
I
u
3
= h19502u
7
a
3
21027u
7
a
2
+ ··· 98205a + 12679, 2u
7
a
3
3u
7
a
2
+ ··· 2a + 5,
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
4
= h−7.80310 × 10
46
a
7
u
7
+ 1.01169 × 10
47
a
6
u
7
+ ··· + 1.16866 × 10
48
a + 5.76531 × 10
47
,
2a
7
u
7
10u
7
a
6
+ ··· + 388a 283, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
5
= h−3u
31
13u
30
+ ··· + 2b 305, 631u
31
+ 546u
30
+ ··· + 78a + 12324, u
32
17u
30
+ ··· + 17u
2
39i
I
u
6
= h−u
7
+ 3u
5
2u
3
+ b u, u
5
2u
3
+ a + u, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
7
= h−u
7
a + 2u
6
a 2u
7
+ 2u
5
a + 2u
6
4u
4
a + 5u
5
u
3
a 4u
4
+ u
2
a 3u
3
+ b + 2a u + 3,
2u
7
a + 2u
6
a u
7
+ 5u
5
a 4u
4
a + 2u
5
4u
3
a + 3u
4
+ 2u
2
a + a
2
au 5u
2
+ 2a 3u + 2,
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
v
1
= ha, b
2
+ b + 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 195 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8u
18
37u
17
+ · · · + 2b + 46, 33u
18
+ 154u
17
+ · · · + 8a
196, u
19
+ 6u
18
+ · · · + 4u 8i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
33
8
u
18
77
4
u
17
+ ··· 31u +
49
2
4u
18
+
37
2
u
17
+ ··· + 29u 23
a
4
=
13
8
u
18
8u
17
+ ···
23
2
u +
21
2
21
4
u
18
23u
17
+ ··· 26u + 25
a
2
=
5
8
u
18
+
13
4
u
17
+ ··· + 5u
7
2
7
2
u
18
35
2
u
17
+ ··· 33u + 25
a
8
=
25
8
u
18
61
4
u
17
+ ··· 27u +
41
2
1
2
u
18
3u
17
+ ··· 6u + 5
a
3
=
23
8
u
18
53
4
u
17
+ ··· 20u +
35
2
11
2
u
18
51
2
u
17
+ ··· 41u + 33
a
10
=
3.12500u
18
13.5000u
17
+ ··· 15.5000u + 13.5000
7
4
u
18
+ 9u
17
+ ··· + 17u 13
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19
2
u
18
+ 36u
17
+
41
2
u
16
36u
15
+
97
2
u
14
+ 132u
13
91
2
u
12
24u
11
+ 186u
10
+ 31u
9
+
53
2
u
8
+ 182u
7
+
61
2
u
6
+ 65u
5
+
215
2
u
4
+ 16u
3
+ 63u
2
+ 4u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
19
17u
18
+ ··· + 287u + 73
c
2
, c
4
, c
8
c
10
u
19
+ u
18
+ ··· u 1
c
3
, c
9
u
19
2u
18
+ ··· u + 8
c
5
, c
6
, c
11
u
19
+ 6u
18
+ ··· + 4u 8
c
12
u
19
18u
18
+ ··· + 18468u 2216
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
19
9y
18
+ ··· + 666077y 5329
c
2
, c
4
, c
8
c
10
y
19
y
18
+ ··· + 13y 1
c
3
, c
9
y
19
18y
18
+ ··· + 1249y 64
c
5
, c
6
, c
11
y
19
14y
18
+ ··· + 208y 64
c
12
y
19
8y
18
+ ··· + 32723920y 4910656
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.709745 + 0.730285I
a = 0.258506 0.953257I
b = 0.755251 0.717037I
2.03197 + 8.96060I 2.84841 12.66101I
u = 0.709745 0.730285I
a = 0.258506 + 0.953257I
b = 0.755251 + 0.717037I
2.03197 8.96060I 2.84841 + 12.66101I
u = 0.186145 + 0.879926I
a = 0.46153 + 2.33829I
b = 1.00566 + 1.25604I
6.8086 + 15.8690I 0.12525 9.18098I
u = 0.186145 0.879926I
a = 0.46153 2.33829I
b = 1.00566 1.25604I
6.8086 15.8690I 0.12525 + 9.18098I
u = 0.658306 + 0.912470I
a = 0.782879 0.112346I
b = 0.619935 0.425591I
2.40898 3.25505I 6.9874 + 16.0679I
u = 0.658306 0.912470I
a = 0.782879 + 0.112346I
b = 0.619935 + 0.425591I
2.40898 + 3.25505I 6.9874 16.0679I
u = 1.060720 + 0.501828I
a = 0.924368 + 0.574213I
b = 0.91352 + 1.17079I
4.13541 10.97830I 2.41741 + 5.86474I
u = 1.060720 0.501828I
a = 0.924368 0.574213I
b = 0.91352 1.17079I
4.13541 + 10.97830I 2.41741 5.86474I
u = 0.187090 + 0.762030I
a = 0.744207 0.660545I
b = 0.442488 0.196300I
2.15136 + 1.44412I 5.18074 1.70147I
u = 0.187090 0.762030I
a = 0.744207 + 0.660545I
b = 0.442488 + 0.196300I
2.15136 1.44412I 5.18074 + 1.70147I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.284930 + 0.407140I
a = 0.266492 0.998983I
b = 0.546134 0.399233I
1.40301 5.90085I 7.35606 + 8.38070I
u = 1.284930 0.407140I
a = 0.266492 + 0.998983I
b = 0.546134 + 0.399233I
1.40301 + 5.90085I 7.35606 8.38070I
u = 1.40516
a = 0.687894
b = 0.909327
6.64749 13.3450
u = 1.38924 + 0.37756I
a = 1.03923 + 1.64419I
b = 1.08787 + 1.28548I
1.8311 20.3870I 4.18663 + 10.65697I
u = 1.38924 0.37756I
a = 1.03923 1.64419I
b = 1.08787 1.28548I
1.8311 + 20.3870I 4.18663 10.65697I
u = 1.49857 + 0.13199I
a = 0.577538 0.299514I
b = 1.071510 0.799617I
5.36721 11.65510I 7.98385 + 9.40931I
u = 1.49857 0.13199I
a = 0.577538 + 0.299514I
b = 1.071510 + 0.799617I
5.36721 + 11.65510I 7.98385 9.40931I
u = 0.470871
a = 0.300004
b = 0.675904
0.843314 11.7740
u = 1.57590
a = 0.0870582
b = 0.854789
6.18911 18.7100
6
II. I
u
2
= h−3u
10
a 7u
9
a + · · · + b 8a, 4u
9
a 7u
10
+ · · · + 4a 18, u
11
+
4u
10
+ · · · 2u + 4i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
a
3u
10
a + 7u
9
a + ··· 9au + 8a
a
4
=
3
2
u
10
a u
10
+ ··· + 4a
3
2
4u
10
a
1
2
u
10
+ ··· 10a +
1
2
u
a
2
=
3u
10
a +
1
2
u
10
+ ··· 7a +
5
2
5u
10
a +
1
2
u
10
+ ··· + 12a +
1
2
u
a
8
=
3u
10
a 7u
9
a + ··· + 8au 7a
5u
10
a 12u
9
a + ··· + 13au 12a
a
3
=
2u
10
a u
10
+ ··· + 5a
3
2
1
2
u
10
u
9
+ ··· + au +
1
2
u
a
10
=
5
2
u
10
a
1
4
u
10
+ ··· + 8a
1
2
2u
10
a u
10
+ ··· + 6a 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 16u
10
+ 39u
9
13u
8
44u
7
+ 75u
6
+ 39u
5
54u
4
+ 109u
3
+ 48u
2
64u + 58
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
22
24u
21
+ ··· 19393u + 1763
c
2
, c
4
, c
8
c
10
u
22
+ 2u
19
+ ··· + 3u + 1
c
3
, c
9
(u
11
+ u
10
u
6
+ u
5
+ 2u
4
+ u
3
+ u
2
1)
2
c
5
, c
6
, c
11
(u
11
+ 4u
10
+ 3u
9
4u
8
+ 9u
6
+ u
5
+ 2u
4
+ 12u
3
+ u
2
2u + 4)
2
c
12
(u
11
12u
10
+ ··· + 670u 124)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
22
14y
21
+ ··· + 4402211y + 3108169
c
2
, c
4
, c
8
c
10
y
22
+ 16y
20
+ ··· 7y + 1
c
3
, c
9
(y
11
y
10
+ 4y
8
2y
7
3y
6
+ 7y
5
5y
3
+ 3y
2
+ 2y 1)
2
c
5
, c
6
, c
11
(y
11
10y
10
+ ··· 4y 16)
2
c
12
(y
11
2y
10
+ ··· + 19612y 15376)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.210854 + 0.924372I
a = 0.288859 + 1.113730I
b = 0.160583 + 0.786630I
6.34106 + 7.03153I 4.95033 7.71063I
u = 0.210854 + 0.924372I
a = 0.51363 2.12870I
b = 0.97487 1.17661I
6.34106 + 7.03153I 4.95033 7.71063I
u = 0.210854 0.924372I
a = 0.288859 1.113730I
b = 0.160583 0.786630I
6.34106 7.03153I 4.95033 + 7.71063I
u = 0.210854 0.924372I
a = 0.51363 + 2.12870I
b = 0.97487 + 1.17661I
6.34106 7.03153I 4.95033 + 7.71063I
u = 1.038000 + 0.605884I
a = 0.938719 0.487233I
b = 0.887750 1.011390I
3.82481 1.73068I 5.80090 + 0.49536I
u = 1.038000 + 0.605884I
a = 0.139780 + 0.544571I
b = 0.085916 + 0.710196I
3.82481 1.73068I 5.80090 + 0.49536I
u = 1.038000 0.605884I
a = 0.938719 + 0.487233I
b = 0.887750 + 1.011390I
3.82481 + 1.73068I 5.80090 0.49536I
u = 1.038000 0.605884I
a = 0.139780 0.544571I
b = 0.085916 0.710196I
3.82481 + 1.73068I 5.80090 0.49536I
u = 0.407098 + 0.511028I
a = 0.850397 0.404251I
b = 0.692471 + 0.395759I
2.05024 + 1.72126I 8.54110 3.80336I
u = 0.407098 + 0.511028I
a = 0.130348 + 1.238060I
b = 0.797814 + 0.689545I
2.05024 + 1.72126I 8.54110 3.80336I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.407098 0.511028I
a = 0.850397 + 0.404251I
b = 0.692471 0.395759I
2.05024 1.72126I 8.54110 + 3.80336I
u = 0.407098 0.511028I
a = 0.130348 1.238060I
b = 0.797814 0.689545I
2.05024 1.72126I 8.54110 + 3.80336I
u = 1.40649 + 0.16331I
a = 1.009700 + 0.511325I
b = 1.063190 + 0.736394I
7.81324 4.10222I 12.81849 + 4.00795I
u = 1.40649 + 0.16331I
a = 0.229507 0.746116I
b = 0.874612 + 0.175339I
7.81324 4.10222I 12.81849 + 4.00795I
u = 1.40649 0.16331I
a = 1.009700 0.511325I
b = 1.063190 0.736394I
7.81324 + 4.10222I 12.81849 4.00795I
u = 1.40649 0.16331I
a = 0.229507 + 0.746116I
b = 0.874612 0.175339I
7.81324 + 4.10222I 12.81849 4.00795I
u = 1.40354 + 0.39691I
a = 0.697877 + 0.666519I
b = 0.333033 + 0.789828I
1.24688 11.76520I 0.95863 + 10.20992I
u = 1.40354 + 0.39691I
a = 0.87761 1.60371I
b = 1.05438 1.23493I
1.24688 11.76520I 0.95863 + 10.20992I
u = 1.40354 0.39691I
a = 0.697877 0.666519I
b = 0.333033 0.789828I
1.24688 + 11.76520I 0.95863 10.20992I
u = 1.40354 0.39691I
a = 0.87761 + 1.60371I
b = 1.05438 + 1.23493I
1.24688 + 11.76520I 0.95863 10.20992I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.69185
a = 0.187966
b = 1.29033
6.38838 69.8660
u = 1.69185
a = 0.0443785
b = 0.304645
6.38838 69.8660
12
III. I
u
3
= h19502u
7
a
3
21027u
7
a
2
+ · · · 98205a + 12679, 2u
7
a
3
3u
7
a
2
+
· · · 2a + 5, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
a
0.661062a
3
u
7
+ 0.712755a
2
u
7
+ ··· + 3.32887a 0.429782
a
4
=
0.437646a
3
u
7
+ 0.959357a
2
u
7
+ ··· + 3.29813a 1.00051
0.559574a
3
u
7
+ 1.72279a
2
u
7
+ ··· + 3.69147a 2.66235
a
2
=
0.661062a
3
u
7
+ 0.712755a
2
u
7
+ ··· + 2.32887a 0.429782
0.0260669a
3
u
7
+ 0.450256a
2
u
7
+ ··· + 2.89658a 0.561506
a
8
=
0.0615233a
3
u
7
0.931358a
2
u
7
+ ··· 0.0497949a + 0.655571
0.894004a
3
u
7
+ 0.716450a
2
u
7
+ ··· + 3.75631a 0.0660995
a
3
=
0.634995a
3
u
7
+ 1.16301a
2
u
7
+ ··· + 5.22545a 0.991288
0.197485a
3
u
7
0.484797a
2
u
7
+ ··· + 1.41934a 0.269618
a
10
=
0.467510a
3
u
7
0.618894a
2
u
7
+ ··· + 2.69489a + 1.85214
0.830379a
3
u
7
+ 1.29009a
2
u
7
+ ··· + 4.67943a + 0.242161
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49440
29501
u
7
a
3
149640
29501
u
7
a
2
+ ···
377448
29501
a +
369314
29501
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
+ u + 1)
16
c
2
, c
4
, c
8
c
10
u
32
u
31
+ ··· + 2u + 1
c
3
, c
9
u
32
3u
31
+ ··· 426u + 43
c
5
, c
6
, c
11
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
4
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
+ y + 1)
16
c
2
, c
4
, c
8
c
10
y
32
+ 7y
31
+ ··· + 4y + 1
c
3
, c
9
y
32
+ 19y
31
+ ··· 51272y + 1849
c
5
, c
6
, c
11
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
4
c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.066150 0.632667I
b = 0.395082 + 0.646442I
1.04066 5.19100I 7.41522 + 7.43899I
u = 1.180120 + 0.268597I
a = 0.427622 0.205756I
b = 0.848982 0.718464I
1.04066 + 2.92853I 7.41522 6.41741I
u = 1.180120 + 0.268597I
a = 0.16498 1.56786I
b = 0.523132 0.775492I
1.04066 5.19100I 7.41522 + 7.43899I
u = 1.180120 + 0.268597I
a = 1.59366 + 1.10585I
b = 0.50164 + 1.57819I
1.04066 + 2.92853I 7.41522 6.41741I
u = 1.180120 0.268597I
a = 0.066150 + 0.632667I
b = 0.395082 0.646442I
1.04066 + 5.19100I 7.41522 7.43899I
u = 1.180120 0.268597I
a = 0.427622 + 0.205756I
b = 0.848982 + 0.718464I
1.04066 2.92853I 7.41522 + 6.41741I
u = 1.180120 0.268597I
a = 0.16498 + 1.56786I
b = 0.523132 + 0.775492I
1.04066 + 5.19100I 7.41522 7.43899I
u = 1.180120 0.268597I
a = 1.59366 1.10585I
b = 0.50164 1.57819I
1.04066 2.92853I 7.41522 + 6.41741I
u = 0.108090 + 0.747508I
a = 0.868562 0.327518I
b = 0.684993 0.017263I
2.15941 + 1.48127I 4.27708 3.36025I
u = 0.108090 + 0.747508I
a = 0.026951 1.315960I
b = 0.938515 0.577223I
2.15941 6.63826I 4.27708 + 10.49616I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.108090 + 0.747508I
a = 0.678238 1.187640I
b = 0.319305 0.390448I
2.15941 + 1.48127I 4.27708 3.36025I
u = 0.108090 + 0.747508I
a = 0.51181 + 3.41311I
b = 0.78945 + 1.65083I
2.15941 6.63826I 4.27708 + 10.49616I
u = 0.108090 0.747508I
a = 0.868562 + 0.327518I
b = 0.684993 + 0.017263I
2.15941 1.48127I 4.27708 + 3.36025I
u = 0.108090 0.747508I
a = 0.026951 + 1.315960I
b = 0.938515 + 0.577223I
2.15941 + 6.63826I 4.27708 10.49616I
u = 0.108090 0.747508I
a = 0.678238 + 1.187640I
b = 0.319305 + 0.390448I
2.15941 1.48127I 4.27708 + 3.36025I
u = 0.108090 0.747508I
a = 0.51181 3.41311I
b = 0.78945 1.65083I
2.15941 + 6.63826I 4.27708 10.49616I
u = 1.37100
a = 0.729330 + 0.242760I
b = 1.22631 1.06765I
6.50273 + 4.05977I 13.8640 6.9282I
u = 1.37100
a = 0.729330 0.242760I
b = 1.22631 + 1.06765I
6.50273 4.05977I 13.8640 + 6.9282I
u = 1.37100
a = 1.10950 + 0.90124I
b = 0.677222 0.116600I
6.50273 4.05977I 13.8640 + 6.9282I
u = 1.37100
a = 1.10950 0.90124I
b = 0.677222 + 0.116600I
6.50273 + 4.05977I 13.8640 6.9282I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.334530 + 0.318930I
a = 0.526075 0.967286I
b = 0.066786 0.430851I
2.37968 + 2.38377I 9.42845 + 1.63403I
u = 1.334530 + 0.318930I
a = 0.308397 + 0.685913I
b = 1.150340 0.134985I
2.37968 + 2.38377I 9.42845 + 1.63403I
u = 1.334530 + 0.318930I
a = 1.23271 1.03718I
b = 1.016490 0.493234I
2.37968 + 10.50330I 9.4284 12.2224I
u = 1.334530 + 0.318930I
a = 1.40627 + 1.90054I
b = 0.96474 + 1.71454I
2.37968 + 10.50330I 9.4284 12.2224I
u = 1.334530 0.318930I
a = 0.526075 + 0.967286I
b = 0.066786 + 0.430851I
2.37968 2.38377I 9.42845 1.63403I
u = 1.334530 0.318930I
a = 0.308397 0.685913I
b = 1.150340 + 0.134985I
2.37968 2.38377I 9.42845 1.63403I
u = 1.334530 0.318930I
a = 1.23271 + 1.03718I
b = 1.016490 + 0.493234I
2.37968 10.50330I 9.4284 + 12.2224I
u = 1.334530 0.318930I
a = 1.40627 1.90054I
b = 0.96474 1.71454I
2.37968 10.50330I 9.4284 + 12.2224I
u = 0.463640
a = 0.461453 + 0.953605I
b = 0.775560 + 1.017420I
0.84504 + 4.05977I 11.89446 6.92820I
u = 0.463640
a = 0.461453 0.953605I
b = 0.775560 1.017420I
0.84504 4.05977I 11.89446 + 6.92820I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.463640
a = 1.05322 + 1.66989I
b = 0.473908 0.494946I
0.84504 + 4.05977I 11.89446 6.92820I
u = 0.463640
a = 1.05322 1.66989I
b = 0.473908 + 0.494946I
0.84504 4.05977I 11.89446 + 6.92820I
19
IV. I
u
4
= h−7.80 × 10
46
a
7
u
7
+ 1.01 × 10
47
a
6
u
7
+ · · · + 1.17 × 10
48
a + 5.77 ×
10
47
, 2a
7
u
7
10u
7
a
6
+ · · · + 388a 283, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
a
0.560431a
7
u
7
0.726615a
6
u
7
+ ··· 8.39349a 4.14074
a
4
=
0.398353a
7
u
7
+ 0.437759a
6
u
7
+ ··· + 4.59100a + 3.94324
0.150019a
7
u
7
0.711664a
6
u
7
+ ··· 7.88417a 5.18997
a
2
=
0.210776a
7
u
7
+ 0.0814284a
6
u
7
+ ··· + 9.65613a + 8.47478
0.0439712a
7
u
7
+ 0.297620a
6
u
7
+ ··· 20.3953a 6.11248
a
8
=
0.0110440a
7
u
7
+ 0.00600824a
6
u
7
+ ··· + 7.53628a + 2.78572
0.701062a
7
u
7
0.836421a
6
u
7
+ ··· 5.63674a 3.07530
a
3
=
0.167792a
7
u
7
+ 0.285874a
6
u
7
+ ··· + 1.56554a + 3.06816
0.0319172a
7
u
7
+ 0.306598a
6
u
7
+ ··· 15.4302a 5.98076
a
10
=
0.0717695a
7
u
7
0.420316a
6
u
7
+ ··· 15.6597a 9.66648
0.624793a
7
u
7
0.888235a
6
u
7
+ ··· + 10.4453a + 4.87187
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.878386a
7
u
7
1.54194a
6
u
7
+ ··· + 59.8466a + 21.7637
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
4
+ u
3
2u + 1)
16
c
2
, c
4
, c
8
c
10
u
64
+ u
63
+ ··· 27708u + 17623
c
3
, c
9
(u
32
+ u
31
+ ··· + 2738u + 1369)
2
c
5
, c
6
, c
11
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
8
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
8
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
4
y
3
+ 6y
2
4y + 1)
16
c
2
, c
4
, c
8
c
10
y
64
+ 25y
63
+ ··· + 16352870252y + 310570129
c
3
, c
9
(y
32
33y
31
+ ··· 29148748y + 1874161)
2
c
5
, c
6
, c
11
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
8
c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
8
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.557498 0.750065I
b = 0.076022 1.368170I
2.24921 5.19100I 4.58478 + 7.43899I
u = 1.180120 + 0.268597I
a = 0.375594 + 0.789251I
b = 0.106109 + 0.977961I
2.24921 5.19100I 4.58478 + 7.43899I
u = 1.180120 + 0.268597I
a = 0.793981 0.339728I
b = 0.89684 1.40532I
2.24921 + 2.92853I 4.58478 6.41741I
u = 1.180120 + 0.268597I
a = 0.468251 + 1.215000I
b = 0.525494 + 1.281730I
2.24921 + 2.92853I 4.58478 6.41741I
u = 1.180120 + 0.268597I
a = 1.19699 2.19170I
b = 1.57698 0.84563I
2.24921 5.19100I 4.58478 + 7.43899I
u = 1.180120 + 0.268597I
a = 0.81930 + 2.49677I
b = 1.86154 + 0.87114I
2.24921 + 2.92853I 4.58478 6.41741I
u = 1.180120 + 0.268597I
a = 1.98998 + 1.92913I
b = 0.049106 + 0.370276I
2.24921 + 2.92853I 4.58478 6.41741I
u = 1.180120 + 0.268597I
a = 2.14361 1.84821I
b = 0.066014 0.612653I
2.24921 5.19100I 4.58478 + 7.43899I
u = 1.180120 0.268597I
a = 0.557498 + 0.750065I
b = 0.076022 + 1.368170I
2.24921 + 5.19100I 4.58478 7.43899I
u = 1.180120 0.268597I
a = 0.375594 0.789251I
b = 0.106109 0.977961I
2.24921 + 5.19100I 4.58478 7.43899I
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.180120 0.268597I
a = 0.793981 + 0.339728I
b = 0.89684 + 1.40532I
2.24921 2.92853I 4.58478 + 6.41741I
u = 1.180120 0.268597I
a = 0.468251 1.215000I
b = 0.525494 1.281730I
2.24921 2.92853I 4.58478 + 6.41741I
u = 1.180120 0.268597I
a = 1.19699 + 2.19170I
b = 1.57698 + 0.84563I
2.24921 + 5.19100I 4.58478 7.43899I
u = 1.180120 0.268597I
a = 0.81930 2.49677I
b = 1.86154 0.87114I
2.24921 2.92853I 4.58478 + 6.41741I
u = 1.180120 0.268597I
a = 1.98998 1.92913I
b = 0.049106 0.370276I
2.24921 2.92853I 4.58478 + 6.41741I
u = 1.180120 0.268597I
a = 2.14361 + 1.84821I
b = 0.066014 + 0.612653I
2.24921 + 5.19100I 4.58478 7.43899I
u = 0.108090 + 0.747508I
a = 1.04622 + 1.05153I
b = 0.010366 + 0.720950I
5.44928 + 1.48127I 7.72292 3.36025I
u = 0.108090 + 0.747508I
a = 0.44885 1.74318I
b = 0.134832 1.154790I
5.44928 + 1.48127I 7.72292 3.36025I
u = 0.108090 + 0.747508I
a = 0.58177 2.43120I
b = 1.10937 1.26574I
5.44928 6.63826I 7.72292 + 10.49616I
u = 0.108090 + 0.747508I
a = 1.52809 2.24345I
b = 1.30778 1.23908I
5.44928 + 1.48127I 7.72292 3.36025I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.108090 + 0.747508I
a = 0.28742 + 2.71361I
b = 0.653169 + 1.231330I
5.44928 6.63826I 7.72292 + 10.49616I
u = 0.108090 + 0.747508I
a = 0.46144 2.77434I
b = 0.139839 0.881992I
5.44928 + 1.48127I 7.72292 3.36025I
u = 0.108090 + 0.747508I
a = 0.80607 + 2.71119I
b = 0.069757 + 0.589599I
5.44928 6.63826I 7.72292 + 10.49616I
u = 0.108090 + 0.747508I
a = 2.49172 + 2.13386I
b = 1.77121 + 1.33383I
5.44928 6.63826I 7.72292 + 10.49616I
u = 0.108090 0.747508I
a = 1.04622 1.05153I
b = 0.010366 0.720950I
5.44928 1.48127I 7.72292 + 3.36025I
u = 0.108090 0.747508I
a = 0.44885 + 1.74318I
b = 0.134832 + 1.154790I
5.44928 1.48127I 7.72292 + 3.36025I
u = 0.108090 0.747508I
a = 0.58177 + 2.43120I
b = 1.10937 + 1.26574I
5.44928 + 6.63826I 7.72292 10.49616I
u = 0.108090 0.747508I
a = 1.52809 + 2.24345I
b = 1.30778 + 1.23908I
5.44928 1.48127I 7.72292 + 3.36025I
u = 0.108090 0.747508I
a = 0.28742 2.71361I
b = 0.653169 1.231330I
5.44928 + 6.63826I 7.72292 10.49616I
u = 0.108090 0.747508I
a = 0.46144 + 2.77434I
b = 0.139839 + 0.881992I
5.44928 1.48127I 7.72292 + 3.36025I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.108090 0.747508I
a = 0.80607 2.71119I
b = 0.069757 0.589599I
5.44928 + 6.63826I 7.72292 10.49616I
u = 0.108090 0.747508I
a = 2.49172 2.13386I
b = 1.77121 1.33383I
5.44928 + 6.63826I 7.72292 10.49616I
u = 1.37100
a = 0.854808 + 0.560981I
b = 0.553456 0.800848I
3.21286 + 4.05977I 1.86404 6.92820I
u = 1.37100
a = 0.854808 0.560981I
b = 0.553456 + 0.800848I
3.21286 4.05977I 1.86404 + 6.92820I
u = 1.37100
a = 0.587473 + 0.738539I
b = 0.939573 0.544398I
3.21286 4.05977I 1.86404 + 6.92820I
u = 1.37100
a = 0.587473 0.738539I
b = 0.939573 + 0.544398I
3.21286 + 4.05977I 1.86404 6.92820I
u = 1.37100
a = 0.461575 + 0.539242I
b = 0.61771 + 1.67070I
3.21286 4.05977I 1.86404 + 6.92820I
u = 1.37100
a = 0.461575 0.539242I
b = 0.61771 1.67070I
3.21286 + 4.05977I 1.86404 6.92820I
u = 1.37100
a = 0.574413 + 1.258640I
b = 0.454734 + 0.925998I
3.21286 4.05977I 1.86404 + 6.92820I
u = 1.37100
a = 0.574413 1.258640I
b = 0.454734 0.925998I
3.21286 + 4.05977I 1.86404 6.92820I
26
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.334530 + 0.318930I
a = 1.026690 + 0.231419I
b = 0.123131 + 0.528178I
0.91019 + 2.38377I 2.57155 + 1.63403I
u = 1.334530 + 0.318930I
a = 1.044130 0.266668I
b = 1.14771 1.52608I
0.91019 + 2.38377I 2.57155 + 1.63403I
u = 1.334530 + 0.318930I
a = 0.930223 0.590383I
b = 0.332844 0.999590I
0.91019 + 2.38377I 2.57155 + 1.63403I
u = 1.334530 + 0.318930I
a = 0.233928 1.382460I
b = 0.249060 1.010950I
0.91019 + 2.38377I 2.57155 + 1.63403I
u = 1.334530 + 0.318930I
a = 1.47286 0.39492I
b = 1.75709 + 1.62937I
0.91019 + 10.50330I 2.57155 12.22237I
u = 1.334530 + 0.318930I
a = 0.00136 + 1.87131I
b = 0.054075 + 0.713119I
0.91019 + 10.50330I 2.57155 12.22237I
u = 1.334530 + 0.318930I
a = 1.25518 1.52608I
b = 1.26284 1.19072I
0.91019 + 10.50330I 2.57155 12.22237I
u = 1.334530 + 0.318930I
a = 1.62346 + 1.47579I
b = 0.74699 + 1.20121I
0.91019 + 10.50330I 2.57155 12.22237I
u = 1.334530 0.318930I
a = 1.026690 0.231419I
b = 0.123131 0.528178I
0.91019 2.38377I 2.57155 1.63403I
u = 1.334530 0.318930I
a = 1.044130 + 0.266668I
b = 1.14771 + 1.52608I
0.91019 2.38377I 2.57155 1.63403I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.334530 0.318930I
a = 0.930223 + 0.590383I
b = 0.332844 + 0.999590I
0.91019 2.38377I 2.57155 1.63403I
u = 1.334530 0.318930I
a = 0.233928 + 1.382460I
b = 0.249060 + 1.010950I
0.91019 2.38377I 2.57155 1.63403I
u = 1.334530 0.318930I
a = 1.47286 + 0.39492I
b = 1.75709 1.62937I
0.91019 10.50330I 2.57155 + 12.22237I
u = 1.334530 0.318930I
a = 0.00136 1.87131I
b = 0.054075 0.713119I
0.91019 10.50330I 2.57155 + 12.22237I
u = 1.334530 0.318930I
a = 1.25518 + 1.52608I
b = 1.26284 + 1.19072I
0.91019 10.50330I 2.57155 + 12.22237I
u = 1.334530 0.318930I
a = 1.62346 1.47579I
b = 0.74699 1.20121I
0.91019 10.50330I 2.57155 + 12.22237I
u = 0.463640
a = 0.288618 + 0.831332I
b = 0.621112 0.938012I
2.44483 + 4.05977I 0.10554 6.92820I
u = 0.463640
a = 0.288618 0.831332I
b = 0.621112 + 0.938012I
2.44483 4.05977I 0.10554 + 6.92820I
u = 0.463640
a = 0.776492 + 0.123909I
b = 0.408992 1.078900I
2.44483 4.05977I 0.10554 + 6.92820I
u = 0.463640
a = 0.776492 0.123909I
b = 0.408992 + 1.078900I
2.44483 + 4.05977I 0.10554 6.92820I
28
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.463640
a = 0.11351 + 3.49812I
b = 0.759051 + 0.889385I
2.44483 + 4.05977I 0.10554 6.92820I
u = 0.463640
a = 0.11351 3.49812I
b = 0.759051 0.889385I
2.44483 4.05977I 0.10554 + 6.92820I
u = 0.463640
a = 0.56308 + 3.66494I
b = 0.669519 + 0.537158I
2.44483 + 4.05977I 0.10554 6.92820I
u = 0.463640
a = 0.56308 3.66494I
b = 0.669519 0.537158I
2.44483 4.05977I 0.10554 + 6.92820I
29
V. I
u
5
= h−3u
31
13u
30
+ · · · + 2b 305, 631u
31
+ 546u
30
+ · · · + 78a +
12324, u
32
17u
30
+ · · · + 17u
2
39i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
631
78
u
31
7u
30
+ ···
6085
39
u 158
3
2
u
31
+
13
2
u
30
+ ··· +
127
2
u +
305
2
a
4
=
463
78
u
31
3
2
u
30
+ ···
5788
39
u 68
3
2
u
31
+ 6u
30
+ ···
31
2
u +
239
2
a
2
=
383
78
u
31
3u
30
+ ···
3743
39
u
75
2
4u
31
+
23
2
u
30
+ ···
121
2
u +
475
2
a
8
=
475
78
u
31
4u
30
+ ···
8153
78
u
121
2
3u
31
+ 9u
30
+ ···
75
2
u +
383
2
a
3
=
3.91026u
31
+ 1.50000u
30
+ ··· 90.9744u + 63.5000
7u
31
+
29
2
u
30
+ ··· 158u +
631
2
a
10
=
3.06410u
31
1.50000u
30
+ ··· 55.5897u 15.5000
3
2
u
31
+ 9u
30
+ ··· 68u +
463
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 41u
30
+ 618u
28
4128u
26
+ 15994u
24
39319u
22
+ 62512u
20
61321u
18
+
29367u
16
+ 5630u
14
17324u
12
+ 10795u
10
1247u
8
4569u
6
+ 3660u
4
+ 92u
2
726
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
32
11u
31
+ ··· u 1
c
2
, c
4
, c
8
c
10
u
32
u
31
+ ··· 3u 1
c
3
, c
9
(u
16
5u
14
+ ··· u 1)
2
c
5
, c
6
, c
11
u
32
17u
30
+ ··· + 17u
2
39
c
12
u
32
6u
30
+ ··· 217u
2
39
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
32
23y
31
+ ··· 19y + 1
c
2
, c
4
, c
8
c
10
y
32
+ 11y
31
+ ··· 49y + 1
c
3
, c
9
(y
16
10y
15
+ ··· 15y + 1)
2
c
5
, c
6
, c
11
(y
16
17y
15
+ ··· + 17y 39)
2
c
12
(y
16
6y
15
+ ··· 217y 39)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.629647 + 0.624776I
a = 1.087040 + 0.364560I
b = 0.446274 + 0.076076I
2.92940 2.54300I 1.89886 + 3.79711I
u = 0.629647 0.624776I
a = 1.087040 0.364560I
b = 0.446274 0.076076I
2.92940 + 2.54300I 1.89886 3.79711I
u = 0.629647 + 0.624776I
a = 0.876629 0.237763I
b = 0.568453 0.779279I
2.92940 + 2.54300I 1.89886 3.79711I
u = 0.629647 0.624776I
a = 0.876629 + 0.237763I
b = 0.568453 + 0.779279I
2.92940 2.54300I 1.89886 + 3.79711I
u = 1.155620 + 0.193870I
a = 0.026191 0.747935I
b = 0.231443 1.171860I
1.25945 5.31731I 5.75169 + 8.91890I
u = 1.155620 0.193870I
a = 0.026191 + 0.747935I
b = 0.231443 + 1.171860I
1.25945 + 5.31731I 5.75169 8.91890I
u = 1.155620 + 0.193870I
a = 0.89998 2.52353I
b = 0.866062 0.104892I
1.25945 + 5.31731I 5.75169 8.91890I
u = 1.155620 0.193870I
a = 0.89998 + 2.52353I
b = 0.866062 + 0.104892I
1.25945 5.31731I 5.75169 + 8.91890I
u = 1.186450 + 0.242984I
a = 0.578544 0.781239I
b = 0.66039 1.33386I
1.64172 + 2.45344I 5.90890 + 1.74732I
u = 1.186450 0.242984I
a = 0.578544 + 0.781239I
b = 0.66039 + 1.33386I
1.64172 2.45344I 5.90890 1.74732I
33
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.186450 + 0.242984I
a = 1.13678 + 2.20772I
b = 0.939979 + 0.399562I
1.64172 2.45344I 5.90890 1.74732I
u = 1.186450 0.242984I
a = 1.13678 2.20772I
b = 0.939979 0.399562I
1.64172 + 2.45344I 5.90890 + 1.74732I
u = 0.132917 + 0.749514I
a = 0.86511 + 1.69692I
b = 0.699135 + 0.630594I
4.69890 + 6.03416I 0.76733 4.01841I
u = 0.132917 0.749514I
a = 0.86511 1.69692I
b = 0.699135 0.630594I
4.69890 6.03416I 0.76733 + 4.01841I
u = 0.132917 + 0.749514I
a = 0.12614 2.42491I
b = 0.86022 1.20009I
4.69890 6.03416I 0.76733 + 4.01841I
u = 0.132917 0.749514I
a = 0.12614 + 2.42491I
b = 0.86022 + 1.20009I
4.69890 + 6.03416I 0.76733 4.01841I
u = 1.330500 + 0.012725I
a = 0.181503 + 0.796558I
b = 0.259461 + 1.177500I
4.40410 + 3.95061I 10.52838 5.72470I
u = 1.330500 0.012725I
a = 0.181503 0.796558I
b = 0.259461 1.177500I
4.40410 3.95061I 10.52838 + 5.72470I
u = 1.330500 + 0.012725I
a = 0.944495 + 0.876787I
b = 0.797351 0.622026I
4.40410 3.95061I 10.52838 + 5.72470I
u = 1.330500 0.012725I
a = 0.944495 0.876787I
b = 0.797351 + 0.622026I
4.40410 + 3.95061I 10.52838 5.72470I
34
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.322590 + 0.271417I
a = 1.099260 0.461970I
b = 0.385356 0.772550I
0.41737 + 3.31971I 2.07879 6.21557I
u = 1.322590 0.271417I
a = 1.099260 + 0.461970I
b = 0.385356 + 0.772550I
0.41737 3.31971I 2.07879 + 6.21557I
u = 1.322590 + 0.271417I
a = 0.388950 0.825612I
b = 0.380975 1.234850I
0.41737 3.31971I 2.07879 + 6.21557I
u = 1.322590 0.271417I
a = 0.388950 + 0.825612I
b = 0.380975 + 1.234850I
0.41737 + 3.31971I 2.07879 6.21557I
u = 0.647214I
a = 0.56816 2.03623I
b = 0.305163 0.999497I
4.63655 4.61210
u = 0.647214I
a = 0.56816 + 2.03623I
b = 0.305163 + 0.999497I
4.63655 4.61210
u = 1.341580 + 0.324582I
a = 1.33926 1.48068I
b = 0.99699 1.16492I
0.06232 + 9.94150I 5.86760 6.47381I
u = 1.341580 0.324582I
a = 1.33926 + 1.48068I
b = 0.99699 + 1.16492I
0.06232 9.94150I 5.86760 + 6.47381I
u = 1.341580 + 0.324582I
a = 0.541338 + 0.541357I
b = 0.622958 + 0.855164I
0.06232 9.94150I 5.86760 + 6.47381I
u = 1.341580 0.324582I
a = 0.541338 0.541357I
b = 0.622958 0.855164I
0.06232 + 9.94150I 5.86760 6.47381I
35
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.70928
a = 0.118891
b = 0.151635
6.33211 72.3960
u = 1.70928
a = 0.234821
b = 1.34066
6.33211 72.3960
36
VI.
I
u
6
= h−u
7
+3u
5
2u
3
+bu, u
5
2u
3
+a+u, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
4
=
u
3
+ 2u
u
3
+ u
a
2
=
u
3
+ 2u
u
3
+ u
a
8
=
u
2
1
u
4
+ 2u
2
a
3
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
10
=
u
2
1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
12u
4
+ 4u
3
+ 8u
2
8u + 14
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
8
c
2
, c
3
, c
4
c
8
, c
9
, c
10
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
5
, c
6
, c
11
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
12
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
8
c
2
, c
3
, c
4
c
8
, c
9
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
5
, c
6
, c
11
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.462196 0.399257I
b = 0.570868 0.730671I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 0.268597I
a = 0.462196 + 0.399257I
b = 0.570868 + 0.730671I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.108090 + 0.747508I
a = 0.62965 1.71558I
b = 0.855237 0.665892I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 0.747508I
a = 0.62965 + 1.71558I
b = 0.855237 + 0.665892I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.37100
a = 1.06085
b = 1.09818
6.50273 13.8640
u = 1.334530 + 0.318930I
a = 0.72011 1.45930I
b = 1.031810 0.655470I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 0.318930I
a = 0.72011 + 1.45930I
b = 1.031810 + 0.655470I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.463640
a = 0.285734
b = 0.603304
0.845036 11.8940
40
VII. I
u
7
= h−u
7
a 2u
7
+ · · · + 2a + 3, 2u
7
a u
7
+ · · · + 2a + 2, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
a
u
7
a + 2u
7
+ ··· 2a 3
a
4
=
u
7
a 2u
7
+ ··· + 3a + 5
u
7
a u
7
+ ··· + a + 1
a
2
=
u
7
a 2u
7
+ ··· + 3a + 5
u
7
a u
7
+ ··· + a + 1
a
8
=
u
7
a u
7
+ ··· + 3a + 2
u
7
a + 2u
7
+ ··· a 2
a
3
=
2u
7
a 3u
7
+ ··· + 4a + 7
au
a
10
=
u
7
a u
7
+ ··· + 3a + 3
u
7
a + 2u
7
+ ··· a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
12u
4
4u
3
+ 8u
2
+ 8u + 2
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u + 1)
16
c
2
, c
4
, c
8
c
10
u
16
+ u
15
+ ··· 6u 1
c
3
, c
9
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
2
c
5
, c
6
, c
11
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
2
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
2
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y 1)
16
c
2
, c
4
, c
8
c
10
y
16
+ 7y
15
+ ··· 28y + 1
c
3
, c
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
2
c
5
, c
6
, c
11
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
2
c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.328740 0.071969I
b = 0.71876 1.56857I
2.24921 1.13123I 4.58478 + 0.51079I
u = 1.180120 + 0.268597I
a = 0.46141 + 1.37240I
b = 0.147896 + 0.837895I
2.24921 1.13123I 4.58478 + 0.51079I
u = 1.180120 0.268597I
a = 1.328740 + 0.071969I
b = 0.71876 + 1.56857I
2.24921 + 1.13123I 4.58478 0.51079I
u = 1.180120 0.268597I
a = 0.46141 1.37240I
b = 0.147896 0.837895I
2.24921 + 1.13123I 4.58478 0.51079I
u = 0.108090 + 0.747508I
a = 1.00762 + 1.81519I
b = 0.250978 + 0.716087I
5.44928 2.57849I 7.72292 + 3.56796I
u = 0.108090 + 0.747508I
a = 1.07794 2.39718I
b = 1.10622 1.38198I
5.44928 2.57849I 7.72292 + 3.56796I
u = 0.108090 0.747508I
a = 1.00762 1.81519I
b = 0.250978 0.716087I
5.44928 + 2.57849I 7.72292 3.56796I
u = 0.108090 0.747508I
a = 1.07794 + 2.39718I
b = 1.10622 + 1.38198I
5.44928 + 2.57849I 7.72292 3.56796I
u = 1.37100
a = 1.06835
b = 0.163298
3.21286 1.86400
u = 1.37100
a = 0.308001
b = 1.26148
3.21286 1.86400
44
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.334530 + 0.318930I
a = 0.83920 1.57571I
b = 1.38108 1.30487I
0.91019 + 6.44354I 2.57155 5.29417I
u = 1.334530 + 0.318930I
a = 1.50012 + 0.99373I
b = 0.349274 + 0.649404I
0.91019 + 6.44354I 2.57155 5.29417I
u = 1.334530 0.318930I
a = 0.83920 + 1.57571I
b = 1.38108 + 1.30487I
0.91019 6.44354I 2.57155 + 5.29417I
u = 1.334530 0.318930I
a = 1.50012 0.99373I
b = 0.349274 0.649404I
0.91019 6.44354I 2.57155 + 5.29417I
u = 0.463640
a = 1.51467 + 0.34965I
b = 0.301652 0.738262I
2.44483 0.105540
u = 0.463640
a = 1.51467 0.34965I
b = 0.301652 + 0.738262I
2.44483 0.105540
45
VIII. I
v
1
= ha, b
2
+ b + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
1
0
a
6
=
1
0
a
12
=
1
0
a
7
=
1
0
a
1
=
1
0
a
9
=
0
b
a
4
=
1
b 1
a
2
=
b
b
a
8
=
b
b
a
3
=
0
b
a
10
=
1
b + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8b + 4
46
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
2
u + 1
c
2
, c
4
, c
8
c
10
u
2
+ u + 1
c
5
, c
6
, c
11
c
12
u
2
47
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
9
, c
10
y
2
+ y + 1
c
5
, c
6
, c
11
c
12
y
2
48
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. + 6.92820I
v = 1.00000
a = 0
b = 0.500000 0.866025I
4.05977I 0. 6.92820I
49
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
8
(u + 1)
16
(u
2
u + 1)(u
2
+ u + 1)
16
(u
4
+ u
3
2u + 1)
16
· (u
19
17u
18
+ ··· + 287u + 73)(u
22
24u
21
+ ··· 19393u + 1763)
· (u
32
11u
31
+ ··· u 1)
c
2
, c
4
, c
8
c
10
(u
2
+ u + 1)(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
16
+ u
15
+ ··· 6u 1)(u
19
+ u
18
+ ··· u 1)
· (u
22
+ 2u
19
+ ··· + 3u + 1)(u
32
u
31
+ ··· + 2u + 1)
· (u
32
u
31
+ ··· 3u 1)(u
64
+ u
63
+ ··· 27708u + 17623)
c
3
, c
9
(u
2
u + 1)(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
2
· ((u
11
+ u
10
+ ··· + u
2
1)
2
)(u
16
5u
14
+ ··· u 1)
2
· (u
19
2u
18
+ ··· u + 8)(u
32
3u
31
+ ··· 426u + 43)
· (u
32
+ u
31
+ ··· + 2738u + 1369)
2
c
5
, c
6
, c
11
u
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
14
· (u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
11
+ 4u
10
+ 3u
9
4u
8
+ 9u
6
+ u
5
+ 2u
4
+ 12u
3
+ u
2
2u + 4)
2
· (u
19
+ 6u
18
+ ··· + 4u 8)(u
32
17u
30
+ ··· + 17u
2
39)
c
12
u
2
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
14
· (u
11
12u
10
+ ··· + 670u 124)
2
· (u
19
18u
18
+ ··· + 18468u 2216)(u
32
6u
30
+ ··· 217u
2
39)
50
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
8
(y 1)
16
(y
2
+ y + 1)
17
(y
4
y
3
+ 6y
2
4y + 1)
16
· (y
19
9y
18
+ ··· + 666077y 5329)
· (y
22
14y
21
+ ··· + 4402211y + 3108169)
· (y
32
23y
31
+ ··· 19y + 1)
c
2
, c
4
, c
8
c
10
(y
2
+ y + 1)(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
16
+ 7y
15
+ ··· 28y + 1)(y
19
y
18
+ ··· + 13y 1)
· (y
22
+ 16y
20
+ ··· 7y + 1)(y
32
+ 7y
31
+ ··· + 4y + 1)
· (y
32
+ 11y
31
+ ··· 49y + 1)
· (y
64
+ 25y
63
+ ··· + 16352870252y + 310570129)
c
3
, c
9
(y
2
+ y + 1)(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
· (y
11
y
10
+ 4y
8
2y
7
3y
6
+ 7y
5
5y
3
+ 3y
2
+ 2y 1)
2
· ((y
16
10y
15
+ ··· 15y + 1)
2
)(y
19
18y
18
+ ··· + 1249y 64)
· (y
32
33y
31
+ ··· 29148748y + 1874161)
2
· (y
32
+ 19y
31
+ ··· 51272y + 1849)
c
5
, c
6
, c
11
y
2
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
15
· ((y
11
10y
10
+ ··· 4y 16)
2
)(y
16
17y
15
+ ··· + 17y 39)
2
· (y
19
14y
18
+ ··· + 208y 64)
c
12
y
2
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
15
· (y
11
2y
10
+ ··· + 19612y 15376)
2
· (y
16
6y
15
+ ··· 217y 39)
2
· (y
19
8y
18
+ ··· + 32723920y 4910656)
51