12a
1027
(K12a
1027
)
A knot diagram
1
Linearized knot diagam
4 7 8 10 11 2 3 12 1 5 6 9
Solving Sequence
8,12
9
1,4
2 10 5 3 7 6 11
c
8
c
12
c
1
c
9
c
4
c
3
c
7
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.36041 × 10
31
u
46
1.13554 × 10
32
u
45
+ ··· + 1.29302 × 10
32
b 1.94404 × 10
32
,
2.24156 × 10
31
u
46
+ 7.53273 × 10
31
u
45
+ ··· + 3.23255 × 10
31
a + 5.49837 × 10
32
, u
47
+ 3u
46
+ ··· + 11u + 1i
I
u
2
= hb
2
b 1, a, u + 1i
I
u
3
= hb
2
+ b 1, a
2
2, u 1i
* 3 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.36 × 10
31
u
46
1.14 × 10
32
u
45
+ · · · + 1.29 × 10
32
b 1.94 ×
10
32
, 2.24 × 10
31
u
46
+ 7.53 × 10
31
u
45
+ · · · + 3.23 × 10
31
a + 5.50 ×
10
32
, u
47
+ 3u
46
+ · · · + 11u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.693436u
46
2.33028u
45
+ ··· + 51.8733u 17.0094
0.414565u
46
+ 0.878210u
45
+ ··· 2.42558u + 1.50349
a
2
=
1.27062u
46
+ 4.66656u
45
+ ··· 92.6821u + 25.3900
1.34352u
46
2.38910u
45
+ ··· 1.23584u 2.87972
a
10
=
u
2
+ 1
u
4
2u
2
a
5
=
0.269337u
46
1.48602u
45
+ ··· + 49.2076u 15.7275
0.532338u
46
+ 1.05855u
45
+ ··· 1.02870u + 1.61606
a
3
=
0.278871u
46
1.45207u
45
+ ··· + 49.4477u 15.5059
0.414565u
46
+ 0.878210u
45
+ ··· 2.42558u + 1.50349
a
7
=
1.09240u
46
+ 4.31714u
45
+ ··· 94.1022u + 24.9244
1.00057u
46
1.67329u
45
+ ··· 1.56609u 2.90262
a
6
=
0.741274u
46
2.48932u
45
+ ··· + 48.4395u 16.5010
1.01218u
46
+ 1.69492u
45
+ ··· + 0.702410u + 1.76957
a
11
=
2.45199u
46
+ 6.38937u
45
+ ··· 77.9752u + 22.6332
0.951398u
46
+ 1.42569u
45
+ ··· + 12.6443u 1.14744
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0277644u
46
0.160999u
45
+ ··· 5.16637u 2.38003
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
10u
46
+ ··· 1252u 41
c
2
, c
3
, c
6
c
7
u
47
2u
46
+ ··· 10u + 1
c
4
, c
5
, c
10
c
11
u
47
u
46
+ ··· 4u + 4
c
8
, c
9
, c
12
u
47
3u
46
+ ··· + 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 18y
46
+ ··· + 1361766y 1681
c
2
, c
3
, c
6
c
7
y
47
54y
46
+ ··· + 74y 1
c
4
, c
5
, c
10
c
11
y
47
57y
46
+ ··· + 304y 16
c
8
, c
9
, c
12
y
47
47y
46
+ ··· + 211y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.384168 + 0.933735I
a = 1.12092 1.02399I
b = 1.55340 + 0.17162I
1.07008 + 7.34464I 2.44287 4.66692I
u = 0.384168 0.933735I
a = 1.12092 + 1.02399I
b = 1.55340 0.17162I
1.07008 7.34464I 2.44287 + 4.66692I
u = 0.655220 + 0.738260I
a = 0.024512 0.284636I
b = 0.394578 + 0.582858I
8.68282 + 0.69167I 7.69697 + 0.39730I
u = 0.655220 0.738260I
a = 0.024512 + 0.284636I
b = 0.394578 0.582858I
8.68282 0.69167I 7.69697 0.39730I
u = 0.500977 + 0.840491I
a = 0.619681 + 0.697367I
b = 0.573333 0.570047I
8.15872 + 4.64474I 5.91649 5.94308I
u = 0.500977 0.840491I
a = 0.619681 0.697367I
b = 0.573333 + 0.570047I
8.15872 4.64474I 5.91649 + 5.94308I
u = 1.05786
a = 1.39495
b = 0.132955
6.53482 14.2750
u = 0.808561 + 0.480294I
a = 0.244914 0.563300I
b = 1.53534 0.04664I
5.40245 + 0.60387I 2.86876 0.80089I
u = 0.808561 0.480294I
a = 0.244914 + 0.563300I
b = 1.53534 + 0.04664I
5.40245 0.60387I 2.86876 + 0.80089I
u = 0.897365 + 0.697135I
a = 0.520554 0.385254I
b = 1.47865 0.13246I
2.62151 1.72568I 4.31042 + 0.20195I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.897365 0.697135I
a = 0.520554 + 0.385254I
b = 1.47865 + 0.13246I
2.62151 + 1.72568I 4.31042 0.20195I
u = 0.860635
a = 0.263406
b = 0.380700
1.06395 15.0300
u = 0.347438 + 0.773858I
a = 1.05026 1.26332I
b = 1.55717 + 0.11542I
6.84691 5.11929I 0.37879 + 6.36237I
u = 0.347438 0.773858I
a = 1.05026 + 1.26332I
b = 1.55717 0.11542I
6.84691 + 5.11929I 0.37879 6.36237I
u = 1.17129
a = 0.134391
b = 1.65236
6.66969 8.57260
u = 0.375308 + 0.614572I
a = 0.633040 + 0.852370I
b = 0.568261 0.421058I
0.32221 3.19990I 3.06029 + 9.19456I
u = 0.375308 0.614572I
a = 0.633040 0.852370I
b = 0.568261 + 0.421058I
0.32221 + 3.19990I 3.06029 9.19456I
u = 1.28718
a = 0.273773
b = 0.949055
2.25442 5.01370
u = 0.337492 + 0.539565I
a = 0.60781 1.74002I
b = 1.56840 + 0.05663I
8.40867 + 1.57482I 4.99229 1.00293I
u = 0.337492 0.539565I
a = 0.60781 + 1.74002I
b = 1.56840 0.05663I
8.40867 1.57482I 4.99229 + 1.00293I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39429
a = 0.234243
b = 1.70918
0.706458 0
u = 0.480504 + 0.364841I
a = 0.028159 0.293507I
b = 0.310058 + 0.354613I
1.036960 0.314856I 8.23983 + 0.59404I
u = 0.480504 0.364841I
a = 0.028159 + 0.293507I
b = 0.310058 0.354613I
1.036960 + 0.314856I 8.23983 0.59404I
u = 1.398200 + 0.068490I
a = 0.31034 1.47254I
b = 0.490370 + 0.539803I
3.97392 1.86699I 0
u = 1.398200 0.068490I
a = 0.31034 + 1.47254I
b = 0.490370 0.539803I
3.97392 + 1.86699I 0
u = 1.42950 + 0.07034I
a = 1.27663 + 0.73949I
b = 1.44285 0.09561I
1.56798 + 0.38836I 0
u = 1.42950 0.07034I
a = 1.27663 0.73949I
b = 1.44285 + 0.09561I
1.56798 0.38836I 0
u = 1.42981 + 0.19455I
a = 0.91947 + 1.50523I
b = 1.52603 0.14762I
2.72276 4.28492I 0
u = 1.42981 0.19455I
a = 0.91947 1.50523I
b = 1.52603 + 0.14762I
2.72276 + 4.28492I 0
u = 1.44250 + 0.10539I
a = 0.421487 + 1.174390I
b = 0.340123 0.621543I
7.07024 + 2.02020I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44250 0.10539I
a = 0.421487 1.174390I
b = 0.340123 + 0.621543I
7.07024 2.02020I 0
u = 1.45842 + 0.19966I
a = 0.02427 1.46022I
b = 0.613332 + 0.585418I
6.27479 + 6.12368I 0
u = 1.45842 0.19966I
a = 0.02427 + 1.46022I
b = 0.613332 0.585418I
6.27479 6.12368I 0
u = 1.46180 + 0.28357I
a = 0.45847 + 1.62265I
b = 1.56761 0.18045I
1.00497 + 8.94411I 0
u = 1.46180 0.28357I
a = 0.45847 1.62265I
b = 1.56761 + 0.18045I
1.00497 8.94411I 0
u = 1.50841 + 0.35834I
a = 0.14634 + 1.54270I
b = 1.60053 0.20896I
7.16899 12.03310I 0
u = 1.50841 0.35834I
a = 0.14634 1.54270I
b = 1.60053 + 0.20896I
7.16899 + 12.03310I 0
u = 1.55108 + 0.09583I
a = 0.399380 0.446871I
b = 1.235980 + 0.286169I
11.18770 0.40908I 0
u = 1.55108 0.09583I
a = 0.399380 + 0.446871I
b = 1.235980 0.286169I
11.18770 + 0.40908I 0
u = 1.54096 + 0.29431I
a = 0.118024 1.335240I
b = 0.690898 + 0.651096I
14.8277 8.8002I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54096 0.29431I
a = 0.118024 + 1.335240I
b = 0.690898 0.651096I
14.8277 + 8.8002I 0
u = 1.56276 + 0.21755I
a = 0.336855 + 1.023130I
b = 0.291108 0.752857I
16.0174 4.1262I 0
u = 1.56276 0.21755I
a = 0.336855 1.023130I
b = 0.291108 + 0.752857I
16.0174 + 4.1262I 0
u = 0.168164 + 0.305680I
a = 0.47692 + 1.60928I
b = 0.579305 0.209601I
1.053100 + 0.603352I 5.28744 1.90691I
u = 0.168164 0.305680I
a = 0.47692 1.60928I
b = 0.579305 + 0.209601I
1.053100 0.603352I 5.28744 + 1.90691I
u = 0.343456
a = 3.57272
b = 0.759828
4.20368 1.73630
u = 0.0700122
a = 20.7044
b = 1.61200
3.93845 2.00240
9
II. I
u
2
= hb
2
b 1, a, u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
0
b
a
2
=
1
b 1
a
10
=
0
1
a
5
=
0
b
a
3
=
b
b
a
7
=
b
b 1
a
6
=
0
b
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
u
2
+ u 1
c
4
, c
5
, c
10
c
11
u
2
c
6
, c
7
u
2
u 1
c
8
, c
9
(u + 1)
2
c
12
(u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
y
2
3y + 1
c
4
, c
5
, c
10
c
11
y
2
c
8
, c
9
, c
12
(y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 0.618034
0.657974 6.00000
u = 1.00000
a = 0
b = 1.61803
7.23771 6.00000
13
III. I
u
3
= hb
2
+ b 1, a
2
2, u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
a
b
a
2
=
ba + 1
b + 1
a
10
=
0
1
a
5
=
a
b a
a
3
=
b + a
b
a
7
=
ba + b
b 1
a
6
=
a
b
a
11
=
2
ba + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
(u
2
+ u 1)
2
c
2
, c
3
(u
2
u 1)
2
c
4
, c
5
, c
10
c
11
(u
2
2)
2
c
8
, c
9
(u 1)
4
c
12
(u + 1)
4
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
(y
2
3y + 1)
2
c
4
, c
5
, c
10
c
11
(y 2)
4
c
8
, c
9
, c
12
(y 1)
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.41421
b = 0.618034
5.59278 4.00000
u = 1.00000
a = 1.41421
b = 1.61803
2.30291 4.00000
u = 1.00000
a = 1.41421
b = 0.618034
5.59278 4.00000
u = 1.00000
a = 1.41421
b = 1.61803
2.30291 4.00000
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
3
)(u
47
10u
46
+ ··· 1252u 41)
c
2
, c
3
((u
2
u 1)
2
)(u
2
+ u 1)(u
47
2u
46
+ ··· 10u + 1)
c
4
, c
5
, c
10
c
11
u
2
(u
2
2)
2
(u
47
u
46
+ ··· 4u + 4)
c
6
, c
7
(u
2
u 1)(u
2
+ u 1)
2
(u
47
2u
46
+ ··· 10u + 1)
c
8
, c
9
((u 1)
4
)(u + 1)
2
(u
47
3u
46
+ ··· + 11u 1)
c
12
((u 1)
2
)(u + 1)
4
(u
47
3u
46
+ ··· + 11u 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
3
)(y
47
+ 18y
46
+ ··· + 1361766y 1681)
c
2
, c
3
, c
6
c
7
((y
2
3y + 1)
3
)(y
47
54y
46
+ ··· + 74y 1)
c
4
, c
5
, c
10
c
11
y
2
(y 2)
4
(y
47
57y
46
+ ··· + 304y 16)
c
8
, c
9
, c
12
((y 1)
6
)(y
47
47y
46
+ ··· + 211y 1)
19