12a
1028
(K12a
1028
)
A knot diagram
1
Linearized knot diagam
4 7 8 10 11 2 3 12 1 6 5 9
Solving Sequence
2,6
7 3
8,11
5 12 10 4 1 9
c
6
c
2
c
7
c
5
c
11
c
10
c
4
c
1
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.85413 × 10
21
u
61
+ 5.58501 × 10
20
u
60
+ ··· + 1.19724 × 10
21
b + 4.72952 × 10
21
,
5.85942 × 10
20
u
61
1.64356 × 10
19
u
60
+ ··· + 1.79587 × 10
21
a 5.76656 × 10
21
, u
62
2u
61
+ ··· 3u + 3i
I
u
2
= h2b a + u + 1, a
2
2au 2a + u + 10, u
2
+ u 1i
I
u
3
= hb, a + u 1, u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.85×10
21
u
61
+5.59×10
20
u
60
+· · ·+1.20×10
21
b+4.73×10
21
, 5.86×
10
20
u
61
1.64×10
19
u
60
+· · ·+1.80×10
21
a5.77×10
21
, u
62
2u
61
+· · ·3u+3i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
0.326273u
61
+ 0.00915189u
60
+ ··· + 0.583257u + 3.21102
1.54866u
61
0.466489u
60
+ ··· + 1.71535u 3.95034
a
5
=
1.89429u
61
+ 1.84617u
60
+ ··· 2.84257u + 3.02775
0.503182u
61
0.156338u
60
+ ··· + 2.70916u 0.866273
a
12
=
0.400730u
61
+ 0.0422853u
60
+ ··· + 6.28535u 1.31710
0.764399u
61
0.0338770u
60
+ ··· 2.88357u + 2.08459
a
10
=
1.22239u
61
+ 0.475640u
60
+ ··· 1.13210u + 7.16135
1.54866u
61
0.466489u
60
+ ··· + 1.71535u 3.95034
a
4
=
u
3
2u
u
5
3u
3
+ u
a
1
=
u
7
4u
5
+ 4u
3
u
9
5u
7
+ 7u
5
2u
3
+ u
a
9
=
0.773448u
61
+ 0.634298u
60
+ ··· + 0.552568u + 6.07578
1.06704u
61
0.140676u
60
+ ··· + 1.68212u 2.77517
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5453229852496626061797
598622430020480889203
u
61
+
4853186041595372948925
598622430020480889203
u
60
+ ··· +
14479600513782809331670
598622430020480889203
u +
12926322886540541438955
598622430020480889203
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
62
16u
61
+ ··· 579u 1233
c
2
, c
3
, c
6
c
7
u
62
2u
61
+ ··· 3u + 3
c
4
u
62
u
61
+ ··· + 1776u 340
c
5
, c
10
, c
11
u
62
+ u
61
+ ··· + 28u
2
4
c
8
, c
9
, c
12
u
62
3u
61
+ ··· 42u 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
62
+ 28y
60
+ ··· 15215085y + 1520289
c
2
, c
3
, c
6
c
7
y
62
72y
61
+ ··· 165y + 9
c
4
y
62
3y
61
+ ··· 1187616y + 115600
c
5
, c
10
, c
11
y
62
+ 57y
61
+ ··· 224y + 16
c
8
, c
9
, c
12
y
62
57y
61
+ ··· + 1382y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.007200 + 0.261088I
a = 0.41639 1.97038I
b = 0.267837 1.310190I
1.60394 + 3.46351I 0
u = 1.007200 0.261088I
a = 0.41639 + 1.97038I
b = 0.267837 + 1.310190I
1.60394 3.46351I 0
u = 1.07420
a = 0.365351
b = 0.698555
2.56229 0
u = 0.716351 + 0.566259I
a = 1.86955 1.69297I
b = 0.32576 1.41185I
0.79702 + 10.87260I 0. 8.18899I
u = 0.716351 0.566259I
a = 1.86955 + 1.69297I
b = 0.32576 + 1.41185I
0.79702 10.87260I 0. + 8.18899I
u = 0.655993 + 0.571625I
a = 0.488575 + 1.010890I
b = 0.796895 + 0.259193I
6.11030 6.80886I 5.34073 + 7.16429I
u = 0.655993 0.571625I
a = 0.488575 1.010890I
b = 0.796895 0.259193I
6.11030 + 6.80886I 5.34073 7.16429I
u = 0.673724 + 0.494492I
a = 2.29323 + 1.43376I
b = 0.259258 + 1.374700I
4.69108 + 6.74684I 3.12963 7.87910I
u = 0.673724 0.494492I
a = 2.29323 1.43376I
b = 0.259258 1.374700I
4.69108 6.74684I 3.12963 + 7.87910I
u = 0.796177 + 0.213333I
a = 0.41466 + 2.30478I
b = 0.121032 + 1.385540I
6.55517 + 0.85488I 7.88148 + 0.17264I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.796177 0.213333I
a = 0.41466 2.30478I
b = 0.121032 1.385540I
6.55517 0.85488I 7.88148 0.17264I
u = 0.564043 + 0.548667I
a = 0.447341 + 0.229699I
b = 0.443497 + 0.844170I
4.21718 + 2.38094I 3.74390 2.67056I
u = 0.564043 0.548667I
a = 0.447341 0.229699I
b = 0.443497 0.844170I
4.21718 2.38094I 3.74390 + 2.67056I
u = 0.594165 + 0.444538I
a = 0.836395 1.036370I
b = 0.639315 0.206105I
0.32482 3.45235I 2.17977 + 8.36980I
u = 0.594165 0.444538I
a = 0.836395 + 1.036370I
b = 0.639315 + 0.206105I
0.32482 + 3.45235I 2.17977 8.36980I
u = 0.571188 + 0.431106I
a = 2.56598 0.45376I
b = 0.178341 1.300370I
2.75175 + 2.08926I 0.01721 4.13986I
u = 0.571188 0.431106I
a = 2.56598 + 0.45376I
b = 0.178341 + 1.300370I
2.75175 2.08926I 0.01721 + 4.13986I
u = 0.387908 + 0.598457I
a = 1.019370 + 0.588574I
b = 0.373907 + 0.983797I
4.73467 + 1.53584I 5.00104 3.92364I
u = 0.387908 0.598457I
a = 1.019370 0.588574I
b = 0.373907 0.983797I
4.73467 1.53584I 5.00104 + 3.92364I
u = 1.28895
a = 0.201518
b = 0.778136
2.51819 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.204781 + 0.675940I
a = 0.420014 0.371051I
b = 0.324097 1.368980I
2.31037 6.69590I 3.77430 + 3.38945I
u = 0.204781 0.675940I
a = 0.420014 + 0.371051I
b = 0.324097 + 1.368980I
2.31037 + 6.69590I 3.77430 3.38945I
u = 0.281609 + 0.646493I
a = 0.595970 0.184571I
b = 0.786421 + 0.183473I
7.21336 + 2.69083I 8.17138 1.26728I
u = 0.281609 0.646493I
a = 0.595970 + 0.184571I
b = 0.786421 0.183473I
7.21336 2.69083I 8.17138 + 1.26728I
u = 0.523352 + 0.352342I
a = 1.00450 2.49502I
b = 0.04818 1.50583I
3.44113 1.26231I 1.66254 + 5.76495I
u = 0.523352 0.352342I
a = 1.00450 + 2.49502I
b = 0.04818 + 1.50583I
3.44113 + 1.26231I 1.66254 5.76495I
u = 0.582526 + 0.226332I
a = 0.359239 0.256336I
b = 0.236534 0.399039I
1.067670 + 0.638295I 5.14268 1.93986I
u = 0.582526 0.226332I
a = 0.359239 + 0.256336I
b = 0.236534 + 0.399039I
1.067670 0.638295I 5.14268 + 1.93986I
u = 0.202268 + 0.549474I
a = 0.632451 0.143815I
b = 0.214182 + 1.332140I
3.33458 3.15272I 0.14004 + 2.65338I
u = 0.202268 0.549474I
a = 0.632451 + 0.143815I
b = 0.214182 1.332140I
3.33458 + 3.15272I 0.14004 2.65338I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40914 + 0.13315I
a = 0.51047 + 1.56454I
b = 0.371460 + 1.155570I
0.99301 4.15133I 0
u = 1.40914 0.13315I
a = 0.51047 1.56454I
b = 0.371460 1.155570I
0.99301 + 4.15133I 0
u = 0.347757 + 0.431451I
a = 0.505172 + 0.967871I
b = 0.064547 1.219600I
2.12115 + 0.99111I 2.00930 4.70377I
u = 0.347757 0.431451I
a = 0.505172 0.967871I
b = 0.064547 + 1.219600I
2.12115 0.99111I 2.00930 + 4.70377I
u = 0.314628 + 0.395456I
a = 1.164540 + 0.306965I
b = 0.542566 0.070217I
1.123480 + 0.375315I 7.22919 0.47300I
u = 0.314628 0.395456I
a = 1.164540 0.306965I
b = 0.542566 + 0.070217I
1.123480 0.375315I 7.22919 + 0.47300I
u = 1.49488 + 0.02116I
a = 0.413812 0.671306I
b = 0.148317 1.100670I
8.06794 2.22872I 0
u = 1.49488 0.02116I
a = 0.413812 + 0.671306I
b = 0.148317 + 1.100670I
8.06794 + 2.22872I 0
u = 1.53366 + 0.06763I
a = 0.491620 + 0.585520I
b = 0.641533 + 0.140097I
5.27774 + 0.82413I 0
u = 1.53366 0.06763I
a = 0.491620 0.585520I
b = 0.641533 0.140097I
5.27774 0.82413I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55311 + 0.15223I
a = 0.506739 + 0.861351I
b = 0.548479 + 0.764285I
2.85138 4.88620I 0
u = 1.55311 0.15223I
a = 0.506739 0.861351I
b = 0.548479 0.764285I
2.85138 + 4.88620I 0
u = 1.56119 + 0.09638I
a = 0.23930 3.01008I
b = 0.09718 1.54436I
10.56980 + 2.85407I 0
u = 1.56119 0.09638I
a = 0.23930 + 3.01008I
b = 0.09718 + 1.54436I
10.56980 2.85407I 0
u = 1.56746 + 0.07050I
a = 0.298449 0.641796I
b = 0.346399 0.620690I
8.41341 1.75030I 0
u = 1.56746 0.07050I
a = 0.298449 + 0.641796I
b = 0.346399 + 0.620690I
8.41341 + 1.75030I 0
u = 1.56590 + 0.11660I
a = 1.66729 1.77178I
b = 0.247184 1.349610I
9.98940 4.04036I 0
u = 1.56590 0.11660I
a = 1.66729 + 1.77178I
b = 0.247184 + 1.349610I
9.98940 + 4.04036I 0
u = 1.57023 + 0.12495I
a = 0.179918 0.969880I
b = 0.707659 0.274637I
6.99530 + 5.51319I 0
u = 1.57023 0.12495I
a = 0.179918 + 0.969880I
b = 0.707659 + 0.274637I
6.99530 5.51319I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58497 + 0.17268I
a = 0.089269 + 1.024050I
b = 0.804752 + 0.322755I
1.40796 + 9.56550I 0
u = 1.58497 0.17268I
a = 0.089269 1.024050I
b = 0.804752 0.322755I
1.40796 9.56550I 0
u = 1.59444 + 0.14506I
a = 1.52867 + 2.29285I
b = 0.28220 + 1.40989I
12.3648 9.1191I 0
u = 1.59444 0.14506I
a = 1.52867 2.29285I
b = 0.28220 1.40989I
12.3648 + 9.1191I 0
u = 1.60987 + 0.17229I
a = 1.27643 2.49461I
b = 0.32114 1.44418I
7.0545 13.6509I 0
u = 1.60987 0.17229I
a = 1.27643 + 2.49461I
b = 0.32114 + 1.44418I
7.0545 + 13.6509I 0
u = 1.62128 + 0.05900I
a = 0.17888 + 2.84328I
b = 0.11167 + 1.44607I
14.8365 + 0.1781I 0
u = 1.62128 0.05900I
a = 0.17888 2.84328I
b = 0.11167 1.44607I
14.8365 0.1781I 0
u = 0.365613
a = 2.26862
b = 0.327163
1.07665 14.5070
u = 1.65789
a = 0.489935
b = 0.479321
6.61187 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.67622 + 0.04758I
a = 0.20931 2.66730I
b = 0.185218 1.328710I
10.91160 2.40878I 0
u = 1.67622 0.04758I
a = 0.20931 + 2.66730I
b = 0.185218 + 1.328710I
10.91160 + 2.40878I 0
11
II. I
u
2
= h2b a + u + 1, a
2
2au 2a + u + 10, u
2
+ u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u + 1
a
3
=
u
u + 1
a
8
=
u
u
a
11
=
a
1
2
a
1
2
u
1
2
a
5
=
1
2
au +
1
2
a
1
2
u 4
2
a
12
=
1
2
a
1
2
u
1
2
1
2
a +
1
2
u +
1
2
a
10
=
1
2
a +
1
2
u +
1
2
1
2
a
1
2
u
1
2
a
4
=
1
0
a
1
=
u
u
a
9
=
1
2
a +
3
2
u +
1
2
1
2
a +
1
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
(u
2
+ u 1)
2
c
2
, c
3
(u
2
u 1)
2
c
4
, c
5
, c
10
c
11
(u
2
+ 2)
2
c
8
, c
9
(u 1)
4
c
12
(u + 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
(y
2
3y + 1)
2
c
4
, c
5
, c
10
c
11
(y + 2)
4
c
8
, c
9
, c
12
(y 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803 + 2.82843I
b = 1.414210I
4.27683 4.00000
u = 0.618034
a = 1.61803 2.82843I
b = 1.414210I
4.27683 4.00000
u = 1.61803
a = 0.61803 + 2.82843I
b = 1.414210I
12.1725 4.00000
u = 1.61803
a = 0.61803 2.82843I
b = 1.414210I
12.1725 4.00000
15
III. I
u
3
= hb, a + u 1, u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u + 1
a
3
=
u
u 1
a
8
=
u
u
a
11
=
u + 1
0
a
5
=
1
0
a
12
=
u + 1
0
a
10
=
u + 1
0
a
4
=
1
0
a
1
=
u
u
a
9
=
2u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
u
2
+ u 1
c
4
, c
5
, c
10
c
11
u
2
c
6
, c
7
u
2
u 1
c
8
, c
9
(u + 1)
2
c
12
(u 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
y
2
3y + 1
c
4
, c
5
, c
10
c
11
y
2
c
8
, c
9
, c
12
(y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
0.657974 6.00000
u = 1.61803
a = 0.618034
b = 0
7.23771 6.00000
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
3
)(u
62
16u
61
+ ··· 579u 1233)
c
2
, c
3
((u
2
u 1)
2
)(u
2
+ u 1)(u
62
2u
61
+ ··· 3u + 3)
c
4
u
2
(u
2
+ 2)
2
(u
62
u
61
+ ··· + 1776u 340)
c
5
, c
10
, c
11
u
2
(u
2
+ 2)
2
(u
62
+ u
61
+ ··· + 28u
2
4)
c
6
, c
7
(u
2
u 1)(u
2
+ u 1)
2
(u
62
2u
61
+ ··· 3u + 3)
c
8
, c
9
((u 1)
4
)(u + 1)
2
(u
62
3u
61
+ ··· 42u 11)
c
12
((u 1)
2
)(u + 1)
4
(u
62
3u
61
+ ··· 42u 11)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
3
)(y
62
+ 28y
60
+ ··· 1.52151 × 10
7
y + 1520289)
c
2
, c
3
, c
6
c
7
((y
2
3y + 1)
3
)(y
62
72y
61
+ ··· 165y + 9)
c
4
y
2
(y + 2)
4
(y
62
3y
61
+ ··· 1187616y + 115600)
c
5
, c
10
, c
11
y
2
(y + 2)
4
(y
62
+ 57y
61
+ ··· 224y + 16)
c
8
, c
9
, c
12
((y 1)
6
)(y
62
57y
61
+ ··· + 1382y + 121)
21