10
98
(K10a
96
)
A knot diagram
1
Linearized knot diagam
6 9 7 10 8 1 4 2 5 3
Solving Sequence
4,10 5,7
8 3 1 6 9 2
c
4
c
7
c
3
c
10
c
6
c
9
c
2
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= ⟨−4789953u
11
+ 15314376u
10
+ ··· + 9342488b + 9873021,
16446192u
11
+ 38491161u
10
+ ··· + 23356220a + 2924955,
3u
12
9u
11
+ 22u
10
42u
9
+ 70u
8
110u
7
+ 139u
6
157u
5
+ 149u
4
106u
3
+ 64u
2
20u + 5
I
u
2
= ⟨−u
9
u
8
3u
7
3u
6
5u
5
5u
4
u
2
a 4u
3
4u
2
+ b a 3u 2, 6u
9
a 3u
9
+ ··· + 6a 7,
u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 3u
2
+ 2u + 1
I
u
3
= b + u, 2a u 1, u
2
+ 1
I
u
4
= b, a 1, u
3
+ u 1
I
u
5
= b 1, a u 1, u
3
+ u 1
I
u
6
= b 1, u
3
a u
3
+ au 2u 1
* 5 irreducible components of dim
C
= 0, with total 40 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= ⟨−4.79 × 10
6
u
11
+ 1.53 × 10
7
u
10
+ · · · + 9.34 × 10
6
b + 9.87 × 10
6
, 1.64 ×
10
7
u
11
+3.85×10
7
u
10
+· · ·+2.34×10
7
a+2.92×10
6
, 3u
12
9u
11
+· · ·20u+5
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
0.704146u
11
1.64800u
10
+ ··· + 5.67136u 0.125232
0.512706u
11
1.63922u
10
+ ··· + 5.56042u 1.05679
a
8
=
0.191440u
11
0.00878657u
10
+ ··· + 0.110936u + 0.931555
0.512706u
11
1.63922u
10
+ ··· + 5.56042u 1.05679
a
3
=
0.0685395u
11
0.0742645u
10
+ ··· 2.54876u + 1.65234
0.524747u
11
+ 1.36714u
10
+ ··· 1.44636u + 0.100143
a
1
=
0.159552u
11
+ 0.582496u
10
+ ··· 1.27370u 0.346141
0.514632u
11
1.19725u
10
+ ··· + 3.19361u 0.462234
a
6
=
0.173499u
11
0.281506u
10
+ ··· + 1.01679u + 1.07875
0.0278643u
11
0.396636u
10
+ ··· + 2.71393u 0.664239
a
9
=
u
u
3
+ u
a
2
=
0.169639u
11
0.151768u
10
+ ··· 4.91002u + 2.50685
0.477984u
11
+ 1.17054u
10
+ ··· 2.47082u + 0.578331
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4958289
2335622
u
11
5676297
1167811
u
10
+ ··· +
80416785
2335622
u
35331855
2335622
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
3(3u
12
+ 9u
11
+ ··· + 26u + 5)
c
2
, c
3
, c
7
c
8
u
12
2u
11
+ u
9
+ 3u
7
+ u
6
15u
5
+ 21u
4
14u
3
+ 3u
2
+ u + 2
c
4
, c
9
3(3u
12
+ 9u
11
+ ··· + 20u + 5)
c
5
, c
10
2(2u
12
4u
11
+ ··· + 12u + 3)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
9(9y
12
+ 87y
11
+ ··· 16y + 25)
c
2
, c
3
, c
7
c
8
y
12
4y
11
+ ··· + 11y + 4
c
4
, c
9
9(9y
12
+ 51y
11
+ ··· + 240y + 25)
c
5
, c
10
4(4y
12
20y
11
+ ··· 30y + 9)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.294163 + 0.893263I
a = 0.392558 + 0.428484I
b = 0.312276 1.374800I
0.93953 1.28267I 9.97159 + 5.49540I
u = 0.294163 0.893263I
a = 0.392558 0.428484I
b = 0.312276 + 1.374800I
0.93953 + 1.28267I 9.97159 5.49540I
u = 0.132310 + 1.149860I
a = 0.019852 + 0.332765I
b = 0.435810 0.817904I
3.72744 0.65506I 0.96539 + 2.36054I
u = 0.132310 1.149860I
a = 0.019852 0.332765I
b = 0.435810 + 0.817904I
3.72744 + 0.65506I 0.96539 2.36054I
u = 1.258330 + 0.213822I
a = 1.45041 + 0.16116I
b = 1.325110 + 0.371579I
10.52620 + 7.73722I 13.2705 5.1580I
u = 1.258330 0.213822I
a = 1.45041 0.16116I
b = 1.325110 0.371579I
10.52620 7.73722I 13.2705 + 5.1580I
u = 0.77981 + 1.24219I
a = 1.28771 0.68411I
b = 1.170890 + 0.448059I
1.38664 + 8.65525I 8.05360 7.75821I
u = 0.77981 1.24219I
a = 1.28771 + 0.68411I
b = 1.170890 0.448059I
1.38664 8.65525I 8.05360 + 7.75821I
u = 0.66776 + 1.32565I
a = 1.16439 0.95583I
b = 1.36378 + 0.57208I
7.0244 14.4129I 10.01184 + 7.82077I
u = 0.66776 1.32565I
a = 1.16439 + 0.95583I
b = 1.36378 0.57208I
7.0244 + 14.4129I 10.01184 7.82077I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.191864 + 0.381263I
a = 0.986139 + 0.917994I
b = 0.255755 + 0.338417I
0.534161 1.008590I 7.65789 + 6.71362I
u = 0.191864 0.381263I
a = 0.986139 0.917994I
b = 0.255755 0.338417I
0.534161 + 1.008590I 7.65789 6.71362I
6
II.
I
u
2
= ⟨−u
9
u
8
+ · · · a 2, 6u
9
a 3u
9
+ · · · + 6a 7, u
10
+ u
9
+ · · · + 2u + 1
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
a
u
9
+ u
8
+ 3u
7
+ 3u
6
+ 5u
5
+ 5u
4
+ u
2
a + 4u
3
+ 4u
2
+ a + 3u + 2
a
8
=
u
9
u
8
3u
7
3u
6
5u
5
5u
4
u
2
a 4u
3
4u
2
3u 2
u
9
+ u
8
+ 3u
7
+ 3u
6
+ 5u
5
+ 5u
4
+ u
2
a + 4u
3
+ 4u
2
+ a + 3u + 2
a
3
=
u
9
a + u
9
+ ··· + 2a u
u
5
a + u
6
2u
3
a + 2u
4
au + 2u
2
a
1
=
u
9
a
1
2
u
9
+ ··· 2a +
5
2
u
9
a 2u
9
+ ··· 2a 1
a
6
=
2u
9
a
1
2
u
9
+ ··· a +
1
2
u
9
+ u
8
+ ··· + 3u + 2
a
9
=
u
u
3
+ u
a
2
=
u
9
a + u
9
+ ··· + 2a 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
4u
8
8u
7
8u
6
8u
5
12u
4
4u
2
4u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
10
u
9
+ 5u
8
5u
7
+ 9u
6
9u
5
+ 6u
4
6u
3
+ u
2
+ 1)
2
c
2
, c
3
, c
7
c
8
u
20
2u
19
+ ··· 58u + 31
c
4
, c
9
(u
10
u
9
+ 3u
8
3u
7
+ 5u
6
5u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1)
2
c
5
, c
10
2(2u
20
13u
18
+ ··· 518u + 121)
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
10
+ 9y
9
+ 33y
8
+ 59y
7
+ 41y
6
21y
5
44y
4
6y
3
+ 13y
2
+ 2y + 1)
2
c
2
, c
3
, c
7
c
8
y
20
14y
19
+ ··· 388y + 961
c
4
, c
9
(y
10
+ 5y
9
+ 13y
8
+ 19y
7
+ 17y
6
+ 7y
5
2y
3
+ y
2
+ 2y + 1)
2
c
5
, c
10
4(4y
20
52y
19
+ ··· 56574y + 14641)
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.584958 + 0.771492I
a = 0.759755 + 0.346084I
b = 1.50393 + 0.39581I
8.22706 2.31006I 12.86369 + 3.52133I
u = 0.584958 + 0.771492I
a = 0.94152 1.29105I
b = 1.24454 + 0.70845I
8.22706 2.31006I 12.86369 + 3.52133I
u = 0.584958 0.771492I
a = 0.759755 0.346084I
b = 1.50393 0.39581I
8.22706 + 2.31006I 12.86369 3.52133I
u = 0.584958 0.771492I
a = 0.94152 + 1.29105I
b = 1.24454 0.70845I
8.22706 + 2.31006I 12.86369 3.52133I
u = 0.248527 + 0.782547I
a = 2.10247 0.40028I
b = 1.157780 + 0.163121I
2.84181 + 1.23169I 7.09823 5.44908I
u = 0.248527 + 0.782547I
a = 0.73260 2.58251I
b = 0.965077 + 0.285214I
2.84181 + 1.23169I 7.09823 5.44908I
u = 0.248527 0.782547I
a = 2.10247 + 0.40028I
b = 1.157780 0.163121I
2.84181 1.23169I 7.09823 + 5.44908I
u = 0.248527 0.782547I
a = 0.73260 + 2.58251I
b = 0.965077 0.285214I
2.84181 1.23169I 7.09823 + 5.44908I
u = 0.761643 + 0.208049I
a = 0.670419 + 0.201639I
b = 0.255380 + 0.856092I
5.70347 3.47839I 11.19503 + 2.79515I
u = 0.761643 + 0.208049I
a = 1.53048 0.72472I
b = 1.359950 0.294980I
5.70347 3.47839I 11.19503 + 2.79515I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.761643 0.208049I
a = 0.670419 0.201639I
b = 0.255380 0.856092I
5.70347 + 3.47839I 11.19503 2.79515I
u = 0.761643 0.208049I
a = 1.53048 + 0.72472I
b = 1.359950 + 0.294980I
5.70347 + 3.47839I 11.19503 2.79515I
u = 0.449566 + 1.164790I
a = 1.032640 + 0.923920I
b = 1.096360 0.477116I
1.58679 4.14585I 3.01866 + 3.97600I
u = 0.449566 + 1.164790I
a = 0.0061280 0.0919696I
b = 0.193027 + 0.767853I
1.58679 4.14585I 3.01866 + 3.97600I
u = 0.449566 1.164790I
a = 1.032640 0.923920I
b = 1.096360 + 0.477116I
1.58679 + 4.14585I 3.01866 3.97600I
u = 0.449566 1.164790I
a = 0.0061280 + 0.0919696I
b = 0.193027 0.767853I
1.58679 + 4.14585I 3.01866 3.97600I
u = 0.524355 + 1.163410I
a = 1.040500 + 0.946543I
b = 1.39510 0.62944I
2.90872 + 8.28632I 7.82440 6.14881I
u = 0.524355 + 1.163410I
a = 0.364738 0.233686I
b = 0.065535 + 1.177790I
2.90872 + 8.28632I 7.82440 6.14881I
u = 0.524355 1.163410I
a = 1.040500 0.946543I
b = 1.39510 + 0.62944I
2.90872 8.28632I 7.82440 + 6.14881I
u = 0.524355 1.163410I
a = 0.364738 + 0.233686I
b = 0.065535 1.177790I
2.90872 8.28632I 7.82440 + 6.14881I
11
III. I
u
3
= b + u, 2a u 1, u
2
+ 1
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
1
a
7
=
1
2
u +
1
2
u
a
8
=
3
2
u +
1
2
u
a
3
=
1
2
u +
1
2
1
a
1
=
0.5
1
2
u +
1
2
a
6
=
u +
1
2
1
2
u
1
2
a
9
=
u
0
a
2
=
1
2
u
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
u
2
+ 1
c
5
, c
10
2(2u
2
2u + 1)
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
(y + 1)
2
c
5
, c
10
4(4y
2
+ 1)
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.500000I
b = 1.000000I
1.64493 4.00000
u = 1.000000I
a = 0.500000 0.500000I
b = 1.000000I
1.64493 4.00000
15
IV. I
u
4
= b, a 1, u
3
+ u 1
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
1
0
a
8
=
1
0
a
3
=
1
0
a
1
=
u
u
a
6
=
u
2
+ 1
u
2
a
9
=
u
1
a
2
=
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
u
3
+ u + 1
c
2
, c
8
(u + 1)
3
c
3
, c
7
u
3
c
5
u
3
+ 2u
2
+ u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
y
3
+ 2y
2
+ y 1
c
2
, c
8
(y 1)
3
c
3
, c
7
y
3
c
5
y
3
2y
2
+ 5y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.341164 + 1.161540I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.341164 1.161540I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.682328
a = 1.00000
b = 0
1.64493 6.00000
19
V. I
u
5
= b 1, a u 1, u
3
+ u 1
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
u + 1
1
a
8
=
u
1
a
3
=
u
1
a
1
=
u 1
u
2
+ u
a
6
=
u
2
+ 1
u
2
+ u
a
9
=
u
1
a
2
=
u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
u
3
+ u + 1
c
2
, c
8
u
3
c
3
, c
7
(u + 1)
3
c
10
u
3
+ 2u
2
+ u 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
y
3
+ 2y
2
+ y 1
c
2
, c
8
y
3
c
3
, c
7
(y 1)
3
c
10
y
3
2y
2
+ 5y 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.341164 + 1.161540I
a = 0.658836 + 1.161540I
b = 1.00000
1.64493 6.00000
u = 0.341164 1.161540I
a = 0.658836 1.161540I
b = 1.00000
1.64493 6.00000
u = 0.682328
a = 1.68233
b = 1.00000
1.64493 6.00000
23
VI. I
u
6
= b 1, u
3
a u
3
+ au 2u 1
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
a
1
a
8
=
a 1
1
a
3
=
a + 1
1
a
1
=
a
2
u + 2au u
au + 2u
a
6
=
a
2
u
2
+ 2u
2
a u
2
+ a
u
2
a + 2u
2
+ 1
a
9
=
u
u
3
+ u
a
2
=
a + u + 1
u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
24
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
6
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
3.28987 12.0000
25
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
3(u
2
+ 1)(u
3
+ u + 1)
2
· (u
10
u
9
+ 5u
8
5u
7
+ 9u
6
9u
5
+ 6u
4
6u
3
+ u
2
+ 1)
2
· (3u
12
+ 9u
11
+ ··· + 26u + 5)
c
2
, c
3
, c
7
c
8
u
3
(u + 1)
3
(u
2
+ 1)
· (u
12
2u
11
+ u
9
+ 3u
7
+ u
6
15u
5
+ 21u
4
14u
3
+ 3u
2
+ u + 2)
· (u
20
2u
19
+ ··· 58u + 31)
c
4
, c
9
3(u
2
+ 1)(u
3
+ u + 1)
2
· (u
10
u
9
+ 3u
8
3u
7
+ 5u
6
5u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1)
2
· (3u
12
+ 9u
11
+ ··· + 20u + 5)
c
5
, c
10
8(2u
2
2u + 1)(u
3
+ u + 1)(u
3
+ 2u
2
+ u 1)(2u
12
4u
11
+ ··· + 12u + 3)
· (2u
20
13u
18
+ ··· 518u + 121)
26
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
9(y + 1)
2
(y
3
+ 2y
2
+ y 1)
2
· (y
10
+ 9y
9
+ 33y
8
+ 59y
7
+ 41y
6
21y
5
44y
4
6y
3
+ 13y
2
+ 2y + 1)
2
· (9y
12
+ 87y
11
+ ··· 16y + 25)
c
2
, c
3
, c
7
c
8
y
3
(y 1)
3
(y + 1)
2
(y
12
4y
11
+ ··· + 11y + 4)
· (y
20
14y
19
+ ··· 388y + 961)
c
4
, c
9
9(y + 1)
2
(y
3
+ 2y
2
+ y 1)
2
· (y
10
+ 5y
9
+ 13y
8
+ 19y
7
+ 17y
6
+ 7y
5
2y
3
+ y
2
+ 2y + 1)
2
· (9y
12
+ 51y
11
+ ··· + 240y + 25)
c
5
, c
10
64(4y
2
+ 1)(y
3
2y
2
+ 5y 1)(y
3
+ 2y
2
+ y 1)
· (4y
12
20y
11
+ ··· 30y + 9)(4y
20
52y
19
+ ··· 56574y + 14641)
27