10
99
(K10a
103
)
A knot diagram
1
Linearized knot diagam
5 9 1 8 2 10 4 6 3 7
Solving Sequence
2,9
3
6,10
7 5 1 8 4
c
2
c
9
c
6
c
5
c
1
c
8
c
4
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= b + u, 2u
7
u
6
+ 5u
5
+ 3u
4
4u
3
+ u
2
+ 2a 4u 4, u
8
3u
6
+ 3u
4
2u
3
+ 2u
2
+ 2u 1
I
u
2
= 246u
11
474u
10
+ ··· + 72b 283, 1686u
11
+ 3984u
10
+ ··· + 552a + 4645,
3u
12
12u
11
+ 14u
10
+ 4u
9
20u
8
+ 10u
7
+ 32u
6
108u
5
+ 163u
4
142u
3
+ 96u
2
62u + 23
I
u
3
= b, a 1, u
3
u + 1
I
u
4
= b 1, a u, u
3
u 1
I
u
5
= a
2
+ b + a, a
3
+ 2a
2
+ a + 1, u + 1
I
u
6
= ba + a 1, u + 1
I
u
7
= b 1, u
2
a au 1
I
u
8
= b 1, u + 1
I
v
1
= a, b
3
b 1, v 1
* 6 irreducible components of dim
C
= 0, with total 32 representations.
* 3 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= b + u, 2u
7
u
6
+ · · · + 2a 4, u
8
3u
6
+ 3u
4
2u
3
+ 2u
2
+ 2u 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
u
7
+
1
2
u
6
+ ··· + 2u + 2
u
a
10
=
u
u
3
+ u
a
7
=
u
7
+
1
2
u
6
+ ··· +
3
2
u +
5
2
1
2
u
7
+
3
2
u
5
+ ···
1
2
u
1
2
a
5
=
u
7
+
1
2
u
6
+ ··· + u + 2
u
a
1
=
1
2
u
7
+
1
2
u
6
+ ··· u
2
+ 2
u
2
a
8
=
u
7
+ 3u
5
5
2
u
3
+ 2u
2
3
2
u
5
2
1
2
u
7
u
5
+ u
3
u
2
+ u +
1
2
a
4
=
1
2
u
3
u
2
1
2
u +
1
2
1
2
u
4
+
1
2
u
3
+
1
2
u
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
10u
5
+ 2u
4
+ 6u
3
12u
2
+ 10u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
9
u
8
3u
6
+ 3u
4
2u
3
+ 2u
2
+ 2u 1
c
3
2(2u
8
10u
7
+ 23u
6
22u
5
7u
4
+ 37u
3
30u
2
+ 8)
c
4
, c
6
, c
7
c
10
u
8
3u
6
+ 3u
4
+ 2u
3
+ 2u
2
2u 1
c
8
2(2u
8
+ 10u
7
+ 23u
6
+ 22u
5
7u
4
37u
3
30u
2
+ 8)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
y
8
6y
7
+ 15y
6
14y
5
5y
4
+ 14y
3
+ 6y
2
8y + 1
c
3
, c
8
4(4y
8
8y
7
+ ··· 480y + 64)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.221678 + 0.868597I
a = 0.558946 + 1.189130I
b = 0.221678 0.868597I
7.42191 + 3.34562I 7.11001 1.68383I
u = 0.221678 0.868597I
a = 0.558946 1.189130I
b = 0.221678 + 0.868597I
7.42191 3.34562I 7.11001 + 1.68383I
u = 0.752536
a = 0.564130
b = 0.752536
1.28346 8.36990
u = 1.352820 + 0.318023I
a = 0.432640 + 0.858986I
b = 1.352820 0.318023I
7.42191 3.34562I 7.11001 + 1.68383I
u = 1.352820 0.318023I
a = 0.432640 0.858986I
b = 1.352820 + 0.318023I
7.42191 + 3.34562I 7.11001 1.68383I
u = 1.38933 + 0.55684I
a = 0.396967 + 1.206200I
b = 1.38933 0.55684I
14.3343I 0. 7.84155I
u = 1.38933 0.55684I
a = 0.396967 1.206200I
b = 1.38933 + 0.55684I
14.3343I 0. + 7.84155I
u = 0.382196
a = 2.75337
b = 0.382196
1.28346 8.36990
5
II. I
u
2
= 246u
11
474u
10
+ · · · + 72b 283, 1686u
11
+ 3984u
10
+ · · · +
552a + 4645, 3u
12
12u
11
+ · · · 62u + 23
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
3.05435u
11
7.21739u
10
+ ··· + 25.7808u 8.41486
3.41667u
11
+ 6.58333u
10
+ ··· 21.3194u + 3.93056
a
10
=
u
u
3
+ u
a
7
=
7.48732u
11
+ 25.2409u
10
+ ··· 113.539u + 63.1407
1.08333u
11
0.541667u
10
+ ··· 1.81944u + 6.80556
a
5
=
0.362319u
11
0.634058u
10
+ ··· + 4.46135u 4.48430
3.41667u
11
+ 6.58333u
10
+ ··· 21.3194u + 3.93056
a
1
=
0.331522u
11
+ 0.423913u
10
+ ··· 3.47464u + 3.81522
5
4
u
11
13
8
u
10
+ ··· +
131
24
u
1
3
a
8
=
1.41848u
11
3.79891u
10
+ ··· + 14.0163u 6.06522
1.62500u
11
+ 4.37500u
10
+ ··· 14.8333u + 7.04167
a
4
=
3.68116u
11
12.3080u
10
+ ··· + 55.6027u 29.5495
1.70833u
11
7.79167u
10
+ ··· + 35.5972u 23.5278
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1
18
u
11
+
38
9
u
10
295
54
u
9
187
54
u
8
+
275
54
u
7
65
27
u
6
2u
5
+
71
2
u
4
2645
54
u
3
+
1855
54
u
2
785
27
u+
484
27
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
9
3(3u
12
12u
11
+ ··· 62u + 23)
c
3
(u
6
+ u
5
+ 2u
4
u
3
+ 2u
2
+ 3)
2
c
4
, c
6
, c
7
c
10
3(3u
12
+ 12u
11
+ ··· + 62u + 23)
c
8
(u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
9(9y
12
60y
11
+ ··· + 572y + 529)
c
3
, c
8
(y
6
+ 3y
5
+ 10y
4
+ 13y
3
+ 16y
2
+ 12y + 9)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.079480 + 0.450431I
a = 0.019332 0.915767I
b = 0.187861 + 0.726416I
4.33667I 0. + 5.70400I
u = 1.079480 0.450431I
a = 0.019332 + 0.915767I
b = 0.187861 0.726416I
4.33667I 0. 5.70400I
u = 0.052828 + 1.195260I
a = 0.550361 + 0.680226I
b = 1.171280 0.484667I
4.49149 8.24229I 3.01193 + 6.51979I
u = 0.052828 1.195260I
a = 0.550361 0.680226I
b = 1.171280 + 0.484667I
4.49149 + 8.24229I 3.01193 6.51979I
u = 0.187861 + 0.726416I
a = 1.15611 0.83810I
b = 1.079480 + 0.450431I
4.33667I 0. 5.70400I
u = 0.187861 0.726416I
a = 1.15611 + 0.83810I
b = 1.079480 0.450431I
4.33667I 0. + 5.70400I
u = 1.171280 + 0.484667I
a = 0.362217 + 0.742191I
b = 0.052828 1.195260I
4.49149 8.24229I 3.01193 + 6.51979I
u = 1.171280 0.484667I
a = 0.362217 0.742191I
b = 0.052828 + 1.195260I
4.49149 + 8.24229I 3.01193 6.51979I
u = 1.296770 + 0.356378I
a = 0.391471 1.079490I
b = 1.41250 + 0.63054I
4.49149 8.24229I 3.01193 + 6.51979I
u = 1.296770 0.356378I
a = 0.391471 + 1.079490I
b = 1.41250 0.63054I
4.49149 + 8.24229I 3.01193 6.51979I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41250 + 0.63054I
a = 0.194653 0.979163I
b = 1.296770 + 0.356378I
4.49149 + 8.24229I 3.01193 6.51979I
u = 1.41250 0.63054I
a = 0.194653 + 0.979163I
b = 1.296770 0.356378I
4.49149 8.24229I 3.01193 + 6.51979I
10
III. I
u
3
= b, a 1, u
3
u + 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
1
0
a
10
=
u
1
a
7
=
u + 1
1
a
5
=
1
0
a
1
=
1
0
a
8
=
u
u
a
4
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
3
c
2
, c
4
, c
7
c
8
, c
9
u
3
u + 1
c
3
u
3
+ 2u
2
+ u + 1
c
6
, c
10
(u 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
c
2
, c
4
, c
7
c
8
, c
9
y
3
2y
2
+ y 1
c
3
y
3
2y
2
3y 1
c
6
, c
10
(y 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.662359 0.562280I
a = 1.00000
b = 0
1.64493 6.00000
u = 1.32472
a = 1.00000
b = 0
1.64493 6.00000
14
IV. I
u
4
= b 1, a u, u
3
u 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
u
1
a
10
=
u
1
a
7
=
u
1
a
5
=
u + 1
1
a
1
=
u
1
a
8
=
u 1
u
2
+ u
a
4
=
u
2
+ 1
u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u + 1)
3
c
2
, c
3
, c
4
c
7
, c
9
u
3
u 1
c
6
, c
10
u
3
c
8
u
3
2u
2
+ u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y 1)
3
c
2
, c
3
, c
4
c
7
, c
9
y
3
2y
2
+ y 1
c
6
, c
10
y
3
c
8
y
3
2y
2
3y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 0.662359 + 0.562280I
b = 1.00000
1.64493 6.00000
u = 0.662359 0.562280I
a = 0.662359 0.562280I
b = 1.00000
1.64493 6.00000
u = 1.32472
a = 1.32472
b = 1.00000
1.64493 6.00000
18
V. I
u
5
= a
2
+ b + a, a
3
+ 2a
2
+ a + 1, u + 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
1
a
3
=
1
1
a
6
=
a
a
2
a
a
10
=
1
0
a
7
=
a
2
a
2
a
a
5
=
a
2
a
2
a
a
1
=
a
2
a
a
8
=
a
2
a
2
+ a
a
4
=
a
2
a
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
10
u
3
u 1
c
2
, c
9
(u + 1)
3
c
4
, c
7
u
3
c
8
u
3
2u
2
+ u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
10
y
3
2y
2
+ y 1
c
2
, c
9
(y 1)
3
c
4
, c
7
y
3
c
8
y
3
2y
2
3y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.662359 0.562280I
1.64493 6.00000
u = 1.00000
a = 0.122561 0.744862I
b = 0.662359 + 0.562280I
1.64493 6.00000
u = 1.00000
a = 1.75488
b = 1.32472
1.64493 6.00000
22
VI. I
u
6
= ba + a 1, u + 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
1
a
3
=
1
1
a
6
=
a
b
a
10
=
1
0
a
7
=
b + a
b
a
5
=
b + a
b
a
1
=
b
2
+ a
b
2
a
8
=
a
2
a
a
4
=
a
2
+ b + a
b + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
23
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
6
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
24
VII. I
u
7
= b 1, u
2
a au 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
a
1
a
10
=
u
u
3
+ u
a
7
=
a u
u
3
+ u + 1
a
5
=
a + 1
1
a
1
=
a
1
a
8
=
a
2
u
au + u
a
4
=
a
2
u + 1
au + u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
25
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
7
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
26
VIII. I
u
8
= b 1, u + 1
(i) Arc colorings
a
2
=
1
0
a
9
=
0
1
a
3
=
1
1
a
6
=
a
1
a
10
=
1
0
a
7
=
a + 1
1
a
5
=
a + 1
1
a
1
=
a
1
a
8
=
a
2
a 1
a
4
=
a
2
+ a + 1
a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
27
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
8
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
28
IX. I
v
1
= a, b
3
b 1, v 1
(i) Arc colorings
a
2
=
1
0
a
9
=
1
0
a
3
=
1
0
a
6
=
0
b
a
10
=
1
0
a
7
=
b
b
a
5
=
b
b
a
1
=
b
2
+ 1
b
2
a
8
=
1
b
2
a
4
=
b + 1
b
2
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
10
u
3
u + 1
c
2
, c
9
u
3
c
3
u
3
+ 2u
2
+ u + 1
c
4
, c
7
(u 1)
3
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
8
, c
10
y
3
2y
2
+ y 1
c
2
, c
9
y
3
c
3
y
3
2y
2
3y 1
c
4
, c
7
(y 1)
3
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.662359 + 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 0.662359 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 1.32472
1.64493 6.00000
32
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
9
3u
3
(u + 1)
3
(u
3
u 1)(u
3
u + 1)(u
8
3u
6
+ ··· + 2u 1)
· (3u
12
12u
11
+ ··· 62u + 23)
c
3
2(u
3
u 1)
2
(u
3
+ 2u
2
+ u + 1)
2
(u
6
+ u
5
+ 2u
4
u
3
+ 2u
2
+ 3)
2
· (2u
8
10u
7
+ 23u
6
22u
5
7u
4
+ 37u
3
30u
2
+ 8)
c
4
, c
6
, c
7
c
10
3u
3
(u 1)
3
(u
3
u 1)(u
3
u + 1)(u
8
3u
6
+ ··· 2u 1)
· (3u
12
+ 12u
11
+ ··· + 62u + 23)
c
8
2(u
3
u + 1)
2
(u
3
2u
2
+ u 1)
2
(u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3)
2
· (2u
8
+ 10u
7
+ 23u
6
+ 22u
5
7u
4
37u
3
30u
2
+ 8)
33
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
9y
3
(y 1)
3
(y
3
2y
2
+ y 1)
2
· (y
8
6y
7
+ 15y
6
14y
5
5y
4
+ 14y
3
+ 6y
2
8y + 1)
· (9y
12
60y
11
+ ··· + 572y + 529)
c
3
, c
8
4(y
3
2y
2
3y 1)
2
(y
3
2y
2
+ y 1)
2
· (y
6
+ 3y
5
+ 10y
4
+ 13y
3
+ 16y
2
+ 12y + 9)
2
· (4y
8
8y
7
+ 61y
6
186y
5
+ 329y
4
581y
3
+ 788y
2
480y + 64)
34