12a
1039
(K12a
1039
)
A knot diagram
1
Linearized knot diagam
4 7 8 11 12 9 3 2 1 6 5 10
Solving Sequence
4,8
3 7 2 9 1 10 6 11 12 5
c
3
c
7
c
2
c
8
c
1
c
9
c
6
c
10
c
12
c
5
c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
68
u
67
+ ··· + 3u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
68
u
67
+ · · · + 3u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
2
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
10
=
u
15
6u
13
+ 12u
11
6u
9
6u
7
+ 4u
5
+ 2u
u
15
7u
13
+ 18u
11
19u
9
+ 6u
7
2u
5
+ 4u
3
+ u
a
6
=
u
9
+ 4u
7
5u
5
+ 2u
3
u
u
11
+ 5u
9
8u
7
+ 3u
5
+ u
3
+ u
a
11
=
u
35
16u
33
+ ··· 3u
3
+ 2u
u
37
17u
35
+ ··· + 7u
3
+ u
a
12
=
u
26
+ 11u
24
+ ··· + 3u
2
+ 1
u
26
+ 12u
24
+ ··· + 4u
4
+ 3u
2
a
5
=
u
63
+ 28u
61
+ ··· + 22u
5
+ 12u
3
u
63
+ 29u
61
+ ··· + 4u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
66
+ 124u
64
+ ··· + 16u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
68
11u
67
+ ··· 1692u + 113
c
2
, c
3
, c
7
u
68
+ u
67
+ ··· + 3u
2
+ 1
c
4
, c
5
, c
11
u
68
u
67
+ ··· + 3u
2
+ 1
c
8
u
68
3u
67
+ ··· + 630u 369
c
9
, c
12
u
68
+ 11u
67
+ ··· + 1692u + 113
c
10
u
68
+ 3u
67
+ ··· 630u 369
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
12
y
68
+ 49y
67
+ ··· + 20218y + 12769
c
2
, c
3
, c
4
c
5
, c
7
, c
11
y
68
63y
67
+ ··· + 6y + 1
c
8
, c
10
y
68
19y
67
+ ··· 2666250y + 136161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16639
2.36439 0
u = 1.185360 + 0.209451I
6.83305 1.72993I 0
u = 1.185360 0.209451I
6.83305 + 1.72993I 0
u = 0.365893 + 0.690572I
5.83372 10.83810I 3.95689 + 8.43769I
u = 0.365893 0.690572I
5.83372 + 10.83810I 3.95689 8.43769I
u = 1.208360 + 0.195557I
0.669905 1.153560I 0
u = 1.208360 0.195557I
0.669905 + 1.153560I 0
u = 0.366622 + 0.678680I
7.42138I 0. 8.76802I
u = 0.366622 0.678680I
7.42138I 0. + 8.76802I
u = 0.411460 + 0.633737I
0.45656 5.12674I 0.57871 + 7.03241I
u = 0.411460 0.633737I
0.45656 + 5.12674I 0.57871 7.03241I
u = 0.353617 + 0.662232I
0.67977 3.43697I 1.83810 + 2.79608I
u = 0.353617 0.662232I
0.67977 + 3.43697I 1.83810 2.79608I
u = 1.231400 + 0.212602I
0.45656 + 5.12674I 0
u = 1.231400 0.212602I
0.45656 5.12674I 0
u = 0.330337 + 0.672943I
7.00321 + 0.97426I 5.71997 2.85709I
u = 0.330337 0.672943I
7.00321 0.97426I 5.71997 + 2.85709I
u = 0.548441 + 0.510750I
5.09005 + 6.77785I 2.21904 2.56386I
u = 0.548441 0.510750I
5.09005 6.77785I 2.21904 + 2.56386I
u = 1.231440 + 0.231517I
6.47567 8.30107I 0
u = 1.231440 0.231517I
6.47567 + 8.30107I 0
u = 0.427107 + 0.604623I
4.25225 + 1.96489I 6.41876 3.80214I
u = 0.427107 0.604623I
4.25225 1.96489I 6.41876 + 3.80214I
u = 0.457025 + 0.579336I
0.669905 + 1.153560I 1.403435 0.101236I
u = 0.457025 0.579336I
0.669905 1.153560I 1.403435 + 0.101236I
u = 0.524039 + 0.507598I
0.67977 3.43697I 1.83810 + 2.79608I
u = 0.524039 0.507598I
0.67977 + 3.43697I 1.83810 2.79608I
u = 1.28430
2.97683 0
u = 0.540694 + 0.417882I
6.07300 + 2.79125I 3.29801 3.53193I
u = 0.540694 0.417882I
6.07300 2.79125I 3.29801 + 3.53193I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.484269 + 0.469339I
0.351863I 0. + 3.89168I
u = 0.484269 0.469339I
0.351863I 0. 3.89168I
u = 0.026103 + 0.672070I
10.31710 + 4.99618I 9.53537 3.59644I
u = 0.026103 0.672070I
10.31710 4.99618I 9.53537 + 3.59644I
u = 1.341290 + 0.078014I
4.79218 + 2.27303I 0
u = 1.341290 0.078014I
4.79218 2.27303I 0
u = 0.016190 + 0.650435I
4.25225 1.96489I 6.41876 + 3.80214I
u = 0.016190 0.650435I
4.25225 + 1.96489I 6.41876 3.80214I
u = 1.36044
2.36439 0
u = 1.354250 + 0.153282I
4.85572I 0
u = 1.354250 0.153282I
4.85572I 0
u = 0.168296 + 0.562791I
4.79218 + 2.27303I 7.53878 5.43774I
u = 0.168296 0.562791I
4.79218 2.27303I 7.53878 + 5.43774I
u = 1.41500 + 0.15765I
4.77953I 0
u = 1.41500 0.15765I
4.77953I 0
u = 1.43315 + 0.25654I
1.34747 4.36482I 0
u = 1.43315 0.25654I
1.34747 + 4.36482I 0
u = 1.44513 + 0.18530I
6.07300 + 2.79125I 0
u = 1.44513 0.18530I
6.07300 2.79125I 0
u = 1.44230 + 0.25142I
5.09005 + 6.77785I 0
u = 1.44230 0.25142I
5.09005 6.77785I 0
u = 1.44844 + 0.25675I
5.83372 10.83810I 0
u = 1.44844 0.25675I
5.83372 + 10.83810I 0
u = 1.46054 + 0.17675I
7.00321 + 0.97426I 0
u = 1.46054 0.17675I
7.00321 0.97426I 0
u = 1.44937 + 0.26160I
14.3130I 0
u = 1.44937 0.26160I
14.3130I 0
u = 1.45871 + 0.22229I
10.31710 4.99618I 0
u = 1.45871 0.22229I
10.31710 + 4.99618I 0
u = 1.46621 + 0.16916I
1.34747 4.36482I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46621 0.16916I
1.34747 + 4.36482I 0
u = 1.46180 + 0.20937I
6.83305 + 1.72993I 0
u = 1.46180 0.20937I
6.83305 1.72993I 0
u = 1.45834 + 0.23374I
6.47567 + 8.30107I 0
u = 1.45834 0.23374I
6.47567 8.30107I 0
u = 0.454374
2.97683 0.0821020
u = 0.205634 + 0.349087I
0.817350I 0. + 8.35638I
u = 0.205634 0.349087I
0.817350I 0. 8.35638I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
68
11u
67
+ ··· 1692u + 113
c
2
, c
3
, c
7
u
68
+ u
67
+ ··· + 3u
2
+ 1
c
4
, c
5
, c
11
u
68
u
67
+ ··· + 3u
2
+ 1
c
8
u
68
3u
67
+ ··· + 630u 369
c
9
, c
12
u
68
+ 11u
67
+ ··· + 1692u + 113
c
10
u
68
+ 3u
67
+ ··· 630u 369
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
12
y
68
+ 49y
67
+ ··· + 20218y + 12769
c
2
, c
3
, c
4
c
5
, c
7
, c
11
y
68
63y
67
+ ··· + 6y + 1
c
8
, c
10
y
68
19y
67
+ ··· 2666250y + 136161
9