12a
1059
(K12a
1059
)
A knot diagram
1
Linearized knot diagam
4 7 9 11 12 2 10 1 3 6 5 8
Solving Sequence
5,12 6,8
1 9 11 4 2 3 10 7
c
5
c
12
c
8
c
11
c
4
c
1
c
3
c
10
c
7
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.14828 × 10
28
u
37
+ 8.50493 × 10
28
u
36
+ ··· + 2.35548 × 10
29
b + 4.37452 × 10
29
,
9.04579 × 10
28
u
37
+ 6.37591 × 10
28
u
36
+ ··· + 1.17774 × 10
30
a 2.01495 × 10
30
,
u
38
3u
37
+ ··· + 38u + 10i
I
u
2
= h2u
29
a 3u
29
+ ··· + a 9, u
29
+ 2u
28
+ ··· a + 2, u
30
+ u
29
+ ··· u + 1i
I
u
3
= hu
4
+ u
3
u
2
+ 2b u + 1, u
4
2u
2
+ a + 1, u
6
3u
4
+ 2u
2
+ 1i
I
v
1
= ha, b 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 105 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.15 × 10
28
u
37
+ 8.50 × 10
28
u
36
+ · · · + 2.36 × 10
29
b + 4.37 ×
10
29
, 9.05 × 10
28
u
37
+ 6.38 × 10
28
u
36
+ · · · + 1.18 × 10
30
a 2.01 ×
10
30
, u
38
3u
37
+ · · · + 38u + 10i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
8
=
0.0768064u
37
0.0541369u
36
+ ··· + 0.400423u + 1.71086
0.261020u
37
0.361070u
36
+ ··· 9.03543u 1.85717
a
1
=
0.0395912u
37
0.155029u
36
+ ··· + 2.31691u + 0.790017
0.0608242u
37
0.176995u
36
+ ··· + 0.234757u 0.377871
a
9
=
0.140551u
37
0.0696244u
36
+ ··· 1.72012u + 2.05575
0.615558u
37
0.922281u
36
+ ··· 22.1653u 4.52960
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
2
=
0.00943465u
37
0.0566721u
36
+ ··· + 2.16486u + 1.21012
0.00165545u
37
0.0842333u
36
+ ··· + 2.11565u + 0.0816969
a
3
=
0.100930u
37
+ 0.00413956u
36
+ ··· + 10.2335u + 3.54732
0.209935u
37
+ 0.144189u
36
+ ··· + 9.07278u + 1.58098
a
10
=
u
3
+ 2u
u
5
+ u
3
+ u
a
7
=
0.0740422u
37
0.0468738u
36
+ ··· + 2.13281u + 2.06658
0.220414u
37
0.290916u
36
+ ··· 6.68558u 1.35661
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00842304u
37
+ 0.168232u
36
+ ··· 43.3018u 18.3994
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
64(64u
38
256u
37
+ ··· + 15u 1)
c
2
, c
6
, c
8
c
12
u
38
u
37
+ ··· + 17u 5
c
3
, c
9
u
38
3u
37
+ ··· 834u + 178
c
4
, c
5
, c
11
u
38
3u
37
+ ··· + 38u + 10
c
10
u
38
+ 9u
37
+ ··· 58478u 6110
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
4096(4096y
38
73728y
37
+ ··· 391y + 1)
c
2
, c
6
, c
8
c
12
y
38
19y
37
+ ··· 749y + 25
c
3
, c
9
y
38
+ 31y
37
+ ··· 180424y + 31684
c
4
, c
5
, c
11
y
38
33y
37
+ ··· + 896y + 100
c
10
y
38
+ 3y
37
+ ··· 52394384y + 37332100
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.832821 + 0.547125I
a = 0.86558 1.12589I
b = 0.800463 + 0.066461I
9.55612 8.85033I 14.7980 + 4.0064I
u = 0.832821 0.547125I
a = 0.86558 + 1.12589I
b = 0.800463 0.066461I
9.55612 + 8.85033I 14.7980 4.0064I
u = 0.758122 + 0.726911I
a = 0.598468 + 0.868086I
b = 0.909897 0.239586I
3.21428 + 2.58317I 14.0149 7.3951I
u = 0.758122 0.726911I
a = 0.598468 0.868086I
b = 0.909897 + 0.239586I
3.21428 2.58317I 14.0149 + 7.3951I
u = 0.254953 + 1.055630I
a = 0.191552 + 1.039430I
b = 0.408014 0.285100I
5.53222 1.14690I 22.5523 + 4.7902I
u = 0.254953 1.055630I
a = 0.191552 1.039430I
b = 0.408014 + 0.285100I
5.53222 + 1.14690I 22.5523 4.7902I
u = 0.377700 + 0.817120I
a = 0.930523 0.994516I
b = 1.103510 + 0.283151I
2.13828 7.70452I 10.95675 + 8.64865I
u = 0.377700 0.817120I
a = 0.930523 + 0.994516I
b = 1.103510 0.283151I
2.13828 + 7.70452I 10.95675 8.64865I
u = 0.304901 + 0.821700I
a = 1.12461 + 1.25299I
b = 1.316850 0.071626I
7.8932 + 13.6180I 12.3598 8.2723I
u = 0.304901 0.821700I
a = 1.12461 1.25299I
b = 1.316850 + 0.071626I
7.8932 13.6180I 12.3598 + 8.2723I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.191870 + 0.245310I
a = 0.597452 0.473091I
b = 1.368890 + 0.168011I
0.40005 4.16689I 6.41890 + 7.16086I
u = 1.191870 0.245310I
a = 0.597452 + 0.473091I
b = 1.368890 0.168011I
0.40005 + 4.16689I 6.41890 7.16086I
u = 1.096270 + 0.573423I
a = 0.932566 0.275848I
b = 1.361430 0.074950I
8.26421 + 6.83120I 17.2078 8.7853I
u = 1.096270 0.573423I
a = 0.932566 + 0.275848I
b = 1.361430 + 0.074950I
8.26421 6.83120I 17.2078 + 8.7853I
u = 1.244400 + 0.106432I
a = 0.500503 + 0.821730I
b = 1.86027 + 0.16899I
2.57552 + 1.10250I 12.15322 + 1.49488I
u = 1.244400 0.106432I
a = 0.500503 0.821730I
b = 1.86027 0.16899I
2.57552 1.10250I 12.15322 1.49488I
u = 0.737757
a = 0.738275
b = 0.681107
1.10279 8.36790
u = 1.288170 + 0.175763I
a = 0.202837 0.012188I
b = 0.693144 + 1.009580I
4.92002 2.79762I 16.6701 + 3.7773I
u = 1.288170 0.175763I
a = 0.202837 + 0.012188I
b = 0.693144 1.009580I
4.92002 + 2.79762I 16.6701 3.7773I
u = 0.062119 + 0.674628I
a = 1.066350 0.720953I
b = 0.548733 0.123939I
3.02249 + 0.79229I 0.26606 2.46888I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.062119 0.674628I
a = 1.066350 + 0.720953I
b = 0.548733 + 0.123939I
3.02249 0.79229I 0.26606 + 2.46888I
u = 1.307770 + 0.250331I
a = 0.089765 + 0.665827I
b = 0.340750 + 0.653216I
1.25101 + 2.53582I 5.26256 1.09268I
u = 1.307770 0.250331I
a = 0.089765 0.665827I
b = 0.340750 0.653216I
1.25101 2.53582I 5.26256 + 1.09268I
u = 1.376180 + 0.215614I
a = 0.007963 1.118930I
b = 0.93586 1.62045I
4.46084 3.77438I 17.8969 + 4.8599I
u = 1.376180 0.215614I
a = 0.007963 + 1.118930I
b = 0.93586 + 1.62045I
4.46084 + 3.77438I 17.8969 4.8599I
u = 0.181936 + 0.531158I
a = 2.10293 + 1.17618I
b = 0.852184 + 0.229977I
0.533620 + 0.994797I 12.5887 7.1482I
u = 0.181936 0.531158I
a = 2.10293 1.17618I
b = 0.852184 0.229977I
0.533620 0.994797I 12.5887 + 7.1482I
u = 1.43812 + 0.32819I
a = 1.024740 + 0.167678I
b = 3.38065 0.99960I
13.4573 17.7785I 15.9854 + 8.9050I
u = 1.43812 0.32819I
a = 1.024740 0.167678I
b = 3.38065 + 0.99960I
13.4573 + 17.7785I 15.9854 8.9050I
u = 1.46219 + 0.31744I
a = 0.886952 0.098679I
b = 3.18286 + 0.68484I
8.0205 + 11.8161I 14.4580 8.0646I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46219 0.31744I
a = 0.886952 + 0.098679I
b = 3.18286 0.68484I
8.0205 11.8161I 14.4580 + 8.0646I
u = 1.53956 + 0.03471I
a = 0.926435 + 0.236128I
b = 3.32141 + 0.36741I
17.7030 + 7.3147I 19.0498 4.2883I
u = 1.53956 0.03471I
a = 0.926435 0.236128I
b = 3.32141 0.36741I
17.7030 7.3147I 19.0498 + 4.2883I
u = 1.51262 + 0.38346I
a = 0.770644 0.138564I
b = 2.50061 0.54552I
11.37270 4.09288I 21.9706 + 0.I
u = 1.51262 0.38346I
a = 0.770644 + 0.138564I
b = 2.50061 + 0.54552I
11.37270 + 4.09288I 21.9706 + 0.I
u = 1.61211
a = 0.778308
b = 3.05374
12.1718 21.8720
u = 0.184289 + 0.301680I
a = 1.096640 0.014738I
b = 0.099433 0.437896I
0.612808 + 0.881258I 10.27041 7.59569I
u = 0.184289 0.301680I
a = 1.096640 + 0.014738I
b = 0.099433 + 0.437896I
0.612808 0.881258I 10.27041 + 7.59569I
8
II.
I
u
2
= h2u
29
a3u
29
+· · · + a9, u
29
+2u
28
+· · · a+2, u
30
+u
29
+· · · u+1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
8
=
a
2
5
u
29
a +
3
5
u
29
+ ···
1
5
a +
9
5
a
1
=
u
29
+ u
28
+ ··· + 3u 1
6
5
u
29
a
1
5
u
29
+ ··· +
3
5
a
3
5
a
9
=
u
20
9u
18
+ 33u
16
60u
14
+ 48u
12
+ 3u
10
25u
8
+ 2u
6
+ 9u
4
u
2
1
u
20
8u
18
+ 26u
16
42u
14
+ 31u
12
2u
10
8u
8
2u
6
+ 5u
4
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
2
=
1
5
u
29
a +
9
5
u
29
+ ··· +
3
5
a +
2
5
4
5
u
29
a +
6
5
u
29
+ ··· +
2
5
a +
3
5
a
3
=
u
21
10u
19
+ ··· 6u
3
u
u
23
9u
21
+ ··· 2u
3
u
a
10
=
u
3
+ 2u
u
5
+ u
3
+ u
a
7
=
3
5
u
29
a +
3
5
u
29
+ ··· +
9
5
a
1
5
7
5
u
29
a +
2
5
u
29
+ ··· +
6
5
a +
6
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
28
52u
26
+ 4u
25
+ 292u
24
48u
23
912u
22
+ 244u
21
+
1684u
20
672u
19
1752u
18
+ 1056u
17
+ 752u
16
896u
15
+ 212u
14
+ 332u
13
180u
12
64u
11
156u
10
+ 112u
9
+ 96u
8
64u
7
+ 20u
6
+ 8u
5
8u
4
20u
3
+ 12u 14
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
25(25u
60
+ 175u
59
+ ··· 6914990u + 533119)
c
2
, c
6
, c
8
c
12
u
60
u
59
+ ··· + 2u
2
+ 1
c
3
, c
9
(u
30
+ u
29
+ ··· + u + 1)
2
c
4
, c
5
, c
11
(u
30
+ u
29
+ ··· u + 1)
2
c
10
(u
30
3u
29
+ ··· u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
625
· (625y
60
20625y
59
+ ··· 3671828841416y + 284215868161)
c
2
, c
6
, c
8
c
12
y
60
41y
59
+ ··· + 4y + 1
c
3
, c
9
(y
30
+ 25y
29
+ ··· + 3y + 1)
2
c
4
, c
5
, c
11
(y
30
27y
29
+ ··· + 3y + 1)
2
c
10
(y
30
+ y
29
+ ··· y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.006930 + 0.206480I
a = 1.106440 + 0.089649I
b = 0.700491 + 0.212708I
4.85148 3.89629I 11.54228 + 4.15365I
u = 1.006930 + 0.206480I
a = 0.062835 0.576338I
b = 0.716396 + 0.426617I
4.85148 3.89629I 11.54228 + 4.15365I
u = 1.006930 0.206480I
a = 1.106440 0.089649I
b = 0.700491 0.212708I
4.85148 + 3.89629I 11.54228 4.15365I
u = 1.006930 0.206480I
a = 0.062835 + 0.576338I
b = 0.716396 0.426617I
4.85148 + 3.89629I 11.54228 4.15365I
u = 0.832034 + 0.169903I
a = 0.837632 + 0.478792I
b = 0.728628 0.013221I
1.081760 0.029483I 7.62798 0.47071I
u = 0.832034 + 0.169903I
a = 0.541539 0.269552I
b = 0.764830 0.085001I
1.081760 0.029483I 7.62798 0.47071I
u = 0.832034 0.169903I
a = 0.837632 0.478792I
b = 0.728628 + 0.013221I
1.081760 + 0.029483I 7.62798 + 0.47071I
u = 0.832034 0.169903I
a = 0.541539 + 0.269552I
b = 0.764830 + 0.085001I
1.081760 + 0.029483I 7.62798 + 0.47071I
u = 0.266850 + 0.721202I
a = 1.39335 + 0.53326I
b = 0.755461 + 0.165673I
3.58803 7.69168I 9.96957 + 6.90287I
u = 0.266850 + 0.721202I
a = 1.34228 + 1.44900I
b = 1.176110 + 0.077817I
3.58803 7.69168I 9.96957 + 6.90287I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.266850 0.721202I
a = 1.39335 0.53326I
b = 0.755461 0.165673I
3.58803 + 7.69168I 9.96957 6.90287I
u = 0.266850 0.721202I
a = 1.34228 1.44900I
b = 1.176110 0.077817I
3.58803 + 7.69168I 9.96957 6.90287I
u = 0.703536 + 0.310326I
a = 0.375402 + 1.132660I
b = 0.726738 + 0.185162I
5.20234 + 3.85600I 12.77500 2.05029I
u = 0.703536 + 0.310326I
a = 1.35245 1.17888I
b = 0.727398 0.288938I
5.20234 + 3.85600I 12.77500 2.05029I
u = 0.703536 0.310326I
a = 0.375402 1.132660I
b = 0.726738 0.185162I
5.20234 3.85600I 12.77500 + 2.05029I
u = 0.703536 0.310326I
a = 1.35245 + 1.17888I
b = 0.727398 + 0.288938I
5.20234 3.85600I 12.77500 + 2.05029I
u = 0.228391 + 0.710789I
a = 0.824807 0.489046I
b = 0.348965 + 0.017513I
0.89469 + 3.64220I 4.89571 4.72167I
u = 0.228391 + 0.710789I
a = 0.98019 1.20859I
b = 1.058380 + 0.072042I
0.89469 + 3.64220I 4.89571 4.72167I
u = 0.228391 0.710789I
a = 0.824807 + 0.489046I
b = 0.348965 0.017513I
0.89469 3.64220I 4.89571 + 4.72167I
u = 0.228391 0.710789I
a = 0.98019 + 1.20859I
b = 1.058380 0.072042I
0.89469 3.64220I 4.89571 + 4.72167I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.169829 + 0.699155I
a = 0.27507 + 1.43355I
b = 0.982543 + 0.271641I
2.35081 + 0.37332I 7.79326 + 0.53471I
u = 0.169829 + 0.699155I
a = 0.129943 0.165869I
b = 0.264670 0.891458I
2.35081 + 0.37332I 7.79326 + 0.53471I
u = 0.169829 0.699155I
a = 0.27507 1.43355I
b = 0.982543 0.271641I
2.35081 0.37332I 7.79326 0.53471I
u = 0.169829 0.699155I
a = 0.129943 + 0.165869I
b = 0.264670 + 0.891458I
2.35081 0.37332I 7.79326 0.53471I
u = 0.379833 + 0.540597I
a = 1.91795 + 1.04697I
b = 1.285490 + 0.431592I
8.44109 + 1.73295I 15.3118 4.0988I
u = 0.379833 + 0.540597I
a = 0.70200 2.19064I
b = 0.195589 0.222195I
8.44109 + 1.73295I 15.3118 4.0988I
u = 0.379833 0.540597I
a = 1.91795 1.04697I
b = 1.285490 0.431592I
8.44109 1.73295I 15.3118 + 4.0988I
u = 0.379833 0.540597I
a = 0.70200 + 2.19064I
b = 0.195589 + 0.222195I
8.44109 1.73295I 15.3118 + 4.0988I
u = 1.351750 + 0.104838I
a = 0.918606 0.092731I
b = 3.58585 0.17980I
6.82103 0.39832I 11.93478 1.62643I
u = 1.351750 + 0.104838I
a = 0.387734 + 0.353048I
b = 0.384313 0.303024I
6.82103 0.39832I 11.93478 1.62643I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.351750 0.104838I
a = 0.918606 + 0.092731I
b = 3.58585 + 0.17980I
6.82103 + 0.39832I 11.93478 + 1.62643I
u = 1.351750 0.104838I
a = 0.387734 0.353048I
b = 0.384313 + 0.303024I
6.82103 + 0.39832I 11.93478 + 1.62643I
u = 1.363600 + 0.194579I
a = 0.776181 0.304313I
b = 3.24492 + 0.96961I
8.06303 + 3.51597I 14.7951 5.1228I
u = 1.363600 + 0.194579I
a = 0.815095 0.090094I
b = 3.99423 + 2.25543I
8.06303 + 3.51597I 14.7951 5.1228I
u = 1.363600 0.194579I
a = 0.776181 + 0.304313I
b = 3.24492 0.96961I
8.06303 3.51597I 14.7951 + 5.1228I
u = 1.363600 0.194579I
a = 0.815095 + 0.090094I
b = 3.99423 2.25543I
8.06303 3.51597I 14.7951 + 5.1228I
u = 1.360050 + 0.270550I
a = 0.801459 0.128170I
b = 3.02150 2.03985I
7.18585 + 3.12979I 12.91872 1.86186I
u = 1.360050 + 0.270550I
a = 0.231493 0.068682I
b = 0.845504 + 1.046880I
7.18585 + 3.12979I 12.91872 1.86186I
u = 1.360050 0.270550I
a = 0.801459 + 0.128170I
b = 3.02150 + 2.03985I
7.18585 3.12979I 12.91872 + 1.86186I
u = 1.360050 0.270550I
a = 0.231493 + 0.068682I
b = 0.845504 1.046880I
7.18585 3.12979I 12.91872 + 1.86186I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.39028 + 0.28253I
a = 0.893925 0.133521I
b = 3.12549 + 0.97945I
4.25247 7.24749I 9.92864 + 5.63452I
u = 1.39028 + 0.28253I
a = 0.082294 + 0.578132I
b = 0.382082 + 0.552723I
4.25247 7.24749I 9.92864 + 5.63452I
u = 1.39028 0.28253I
a = 0.893925 + 0.133521I
b = 3.12549 0.97945I
4.25247 + 7.24749I 9.92864 5.63452I
u = 1.39028 0.28253I
a = 0.082294 0.578132I
b = 0.382082 0.552723I
4.25247 + 7.24749I 9.92864 5.63452I
u = 1.42059 + 0.09196I
a = 1.085040 + 0.253869I
b = 3.38504 + 0.97196I
11.61500 2.69486I 17.4134 + 2.4278I
u = 1.42059 + 0.09196I
a = 0.272288 0.773726I
b = 0.134709 1.163670I
11.61500 2.69486I 17.4134 + 2.4278I
u = 1.42059 0.09196I
a = 1.085040 0.253869I
b = 3.38504 0.97196I
11.61500 + 2.69486I 17.4134 2.4278I
u = 1.42059 0.09196I
a = 0.272288 + 0.773726I
b = 0.134709 + 1.163670I
11.61500 + 2.69486I 17.4134 2.4278I
u = 1.40881 + 0.28598I
a = 0.178934 0.868467I
b = 1.10783 1.01091I
8.9306 + 11.3520I 14.5534 7.3132I
u = 1.40881 + 0.28598I
a = 1.104570 + 0.226478I
b = 3.42336 0.88023I
8.9306 + 11.3520I 14.5534 7.3132I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.40881 0.28598I
a = 0.178934 + 0.868467I
b = 1.10783 + 1.01091I
8.9306 11.3520I 14.5534 + 7.3132I
u = 1.40881 0.28598I
a = 1.104570 0.226478I
b = 3.42336 + 0.88023I
8.9306 11.3520I 14.5534 + 7.3132I
u = 1.42434 + 0.20546I
a = 1.029910 + 0.423098I
b = 3.20762 0.64618I
14.1830 4.4767I 19.0263 + 3.5734I
u = 1.42434 + 0.20546I
a = 1.070140 + 0.500011I
b = 2.72487 + 1.14691I
14.1830 4.4767I 19.0263 + 3.5734I
u = 1.42434 0.20546I
a = 1.029910 0.423098I
b = 3.20762 + 0.64618I
14.1830 + 4.4767I 19.0263 3.5734I
u = 1.42434 0.20546I
a = 1.070140 0.500011I
b = 2.72487 1.14691I
14.1830 + 4.4767I 19.0263 3.5734I
u = 0.179795 + 0.471439I
a = 1.11876 1.63717I
b = 1.72380 0.44845I
3.15470 0.99510I 9.51394 + 6.82295I
u = 0.179795 + 0.471439I
a = 0.51110 + 2.18288I
b = 0.096933 0.875944I
3.15470 0.99510I 9.51394 + 6.82295I
u = 0.179795 0.471439I
a = 1.11876 + 1.63717I
b = 1.72380 + 0.44845I
3.15470 + 0.99510I 9.51394 6.82295I
u = 0.179795 0.471439I
a = 0.51110 2.18288I
b = 0.096933 + 0.875944I
3.15470 + 0.99510I 9.51394 6.82295I
17
III. I
u
3
= hu
4
+ u
3
u
2
+ 2b u + 1, u
4
2u
2
+ a + 1, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
8
=
u
4
+ 2u
2
1
1
2
u
4
1
2
u
3
+ ··· +
1
2
u
1
2
a
1
=
u
5
+ 3u
3
2u
u
5
1
2
u
4
+ 2u
3
+ u
2
+
1
2
u
a
9
=
2u
4
+ 4u
2
2
2u
4
u
3
+ 2u
2
+ u
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
2
=
3
2
u
5
+ 4u
3
+ ···
5
2
u +
1
2
3
2
u
5
1
2
u
4
+ ··· +
1
2
u
2
+
1
2
u
a
3
=
2u
5
+ 6u
3
u
2
4u + 1
2u
5
u
4
+ 4u
3
+ u
2
a
10
=
u
3
+ 2u
u
5
+ u
3
+ u
a
7
=
u
4
+
1
2
u
3
+ 2u
2
u
1
2
1
2
u
5
u
4
u
3
+
3
2
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
8u
2
8
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
64(64u
6
192u
5
+ 256u
4
192u
3
+ 92u
2
28u + 5)
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(u
2
+ 1)
3
c
4
, c
5
, c
11
u
6
3u
4
+ 2u
2
+ 1
c
10
u
6
+ u
4
+ 2u
2
+ 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
4096(4096y
6
4096y
5
+ 3584y
4
+ 128y
3
+ 272y
2
+ 136y + 25)
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(y + 1)
6
c
4
, c
5
, c
11
(y
3
3y
2
+ 2y + 1)
2
c
10
(y
3
+ y
2
+ 2y + 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.122561 0.744862I
b = 1.26489 1.09229I
3.02413 2.82812I 11.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.122561 + 0.744862I
b = 1.26489 + 1.09229I
3.02413 + 2.82812I 11.50976 2.97945I
u = 1.307140 + 0.215080I
a = 0.122561 + 0.744862I
b = 0.520029 + 0.214851I
3.02413 + 2.82812I 11.50976 2.97945I
u = 1.307140 0.215080I
a = 0.122561 0.744862I
b = 0.520029 0.214851I
3.02413 2.82812I 11.50976 + 2.97945I
u = 0.569840I
a = 1.75488
b = 0.715080 + 0.377439I
1.11345 4.98050
u = 0.569840I
a = 1.75488
b = 0.715080 0.377439I
1.11345 4.98050
21
IV. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
1
0
a
6
=
1
0
a
8
=
0
1
a
1
=
1
1
a
9
=
1
0
a
11
=
1
0
a
4
=
1
0
a
2
=
0
1
a
3
=
1
0
a
10
=
1
0
a
7
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
12
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
102400(u 1)(64u
6
192u
5
+ 256u
4
192u
3
+ 92u
2
28u + 5)
· (64u
38
256u
37
+ ··· + 15u 1)
· (25u
60
+ 175u
59
+ ··· 6914990u + 533119)
c
2
, c
8
(u 1)(u
2
+ 1)
3
(u
38
u
37
+ ··· + 17u 5)(u
60
u
59
+ ··· + 2u
2
+ 1)
c
3
, c
9
u(u
2
+ 1)
3
(u
30
+ u
29
+ ··· + u + 1)
2
(u
38
3u
37
+ ··· 834u + 178)
c
4
, c
5
, c
11
u(u
6
3u
4
+ 2u
2
+ 1)(u
30
+ u
29
+ ··· u + 1)
2
· (u
38
3u
37
+ ··· + 38u + 10)
c
6
, c
12
(u + 1)(u
2
+ 1)
3
(u
38
u
37
+ ··· + 17u 5)(u
60
u
59
+ ··· + 2u
2
+ 1)
c
10
u(u
6
+ u
4
+ 2u
2
+ 1)(u
30
3u
29
+ ··· u + 1)
2
· (u
38
+ 9u
37
+ ··· 58478u 6110)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
10485760000(y 1)
· (4096y
6
4096y
5
+ 3584y
4
+ 128y
3
+ 272y
2
+ 136y + 25)
· (4096y
38
73728y
37
+ ··· 391y + 1)
· (625y
60
20625y
59
+ ··· 3671828841416y + 284215868161)
c
2
, c
6
, c
8
c
12
(y 1)(y + 1)
6
(y
38
19y
37
+ ··· 749y + 25)
· (y
60
41y
59
+ ··· + 4y + 1)
c
3
, c
9
y(y + 1)
6
(y
30
+ 25y
29
+ ··· + 3y + 1)
2
· (y
38
+ 31y
37
+ ··· 180424y + 31684)
c
4
, c
5
, c
11
y(y
3
3y
2
+ 2y + 1)
2
(y
30
27y
29
+ ··· + 3y + 1)
2
· (y
38
33y
37
+ ··· + 896y + 100)
c
10
y(y
3
+ y
2
+ 2y + 1)
2
(y
30
+ y
29
+ ··· y + 1)
2
· (y
38
+ 3y
37
+ ··· 52394384y + 37332100)
27